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ABSTRACT

This report develops practical procedures for the use of

lifting surface theory to calculate the airloading induced on a

helicopter rotor blade by a nearby tip vortex. Planar lifting sur-

face theory is applied to the model problem of an infinite aspect

ratio wing and a straight, infinite vortex at an arbitrary angle

with the wing, in a compressible free stream. The formulation

of the solution requires the development of the general aerody-

namic kernel for a lifting airfoil; this kernel includes as limits

the Fourier transform of the three-dimensional, steady lifting sur-

face kernel, and the kernel for two-dimensional, unsteady flow

about an airfoil. The appropriate downwash for vortex induced

airloads is a convected, one-dimensional downwash field, or equiv-

alently a sinusoidal gust at an arbitrary angle with the wing,

and the solution for the loads is in the form of an aerodynamic

influence function, valid for all such downwash fields. Numerical

solutions are obtained for cases in the entire range of geometry

and velocity of the model problem, and from these are constructed

usable analytic approximations for the influence functions. These

approximate expressions give the vortex induced loads in a form

that may be practically used in rotary wing airloads calculations

without the extensive calculations involved in usual lifting sur-

face theory solutions. Procedures are developed for the applica-

tion of the model problem to the rotary wing configuration. In

order to evaluate the use of the lifting surface theory solution,

it is compared with lifting line theory in the prediction of the

airloads induced by a free vortex on a single-bladed rotor at high

advance ratio. This comparison shows that the use of the lifting

surface theory solution is necessary in order to obtain accurate

loading prediction for cases involving vortices closer than a few

chord lengths to the blade. The solution and procedures developed

in this report remove one of the limitations of rotary wing air-

loads calculations. They allow the accurate prediction of loads

due to a downwash distribution varying rapidly along the span of

the blade, specifically the downwash due to a nearby tip vortex.
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SmCTIO_i

INTI_ODUC'£1ON

Tae requirement to determine the alrloads on a rotary wing
of a helicopter or autogyro has occupied aerodynamicists for nearly
half a century. Yet an entirely satisfactory prediction of these
airloads is still not possible, and becomes even more difficult to
obtain as the performance of new machines increases. This report
presents the development of procedures to handle one of the prob-
lems involved in the calculation of rotary wing airloads.

The objective of rotary wing aerodynamics is to develop the
most accurate, practical calculation method, in the context of the
i_ignly iterative calculation of helicopter airloads. Because of
the geometry of the rotor wake, the interference of the rotary wing
witr_ its own wake and the wake of other blades is considerably more
important than that of a fixed wing. This interference is mani-
fested as a downwasl_at the blade which must oe calculated in order

to determine the loads on the blade and its subsequent motion. Thus
the calculation of the airloads leads immeCi_ately to a considera-
tion of the downwashfield in which the rotor blade operates; ac-
curate downwashinformation is essential in order to obtain accurate
airloads. The downwashfield is calculated from the vortex wake of
the rotor, and this leads to the necessity for accurate wake geo-
metry information. From the knowledge of the downwasnfield at
the blade, aerodynamic t_leory must be used to oDtain accurate load-
ing. It is with this last problem that this report is concerned.
Present rotary wing airloads calculations involve the determina-
tion of the downwashdistribution along the olade, the aerodynamic
loading along the blade, and the blade motion successively, follow-
ing the blade around the azimuth of the rotor disk. In order to
calculate the downwashdue to the rotor wake -- which in forward
flight is a distribution of trailed and shed vorticity over a



skewed, distorted helix -- the wake is represented by a net of line
vortices (or more recently Oy rectangular vortex sneets) and the
downwashat the blade is then the sum of ti_e contributions from
each element of the net. The geometry of the wake may be assumed,
or it may be calculated by one of several methods of varying ac-
curacy. The blade motion calculation is an aeroelastic problem;
ti_e equations of motion of the blade may be solved by numerical in-
tegration or harmonic analysis. An iterative solution, rather than
a closed form solution, necessarily results unless the geometry of
the wake is known or specified, and nonlinear aerodynamics associ-
ated with stall are neglected.

In the calculation of the aerodynamic loadin_ on a rotary
_i_g it has been customary to use lifting line ti_eor,y. That i_,
it i_ a_umed that the flow over the blade is locally two-dimen-
sional, ti_e influence of t_le rest of the blade and of the rotor
wake 0eing represented only by a uniform downwashat the blade
section. Two-dimensional unsteady airfoil theory (or experimental
or empirical section loads data) is then used to obtain the sec-
tion lift and moment.

The calculation of the airloading on a rotary wing is deeply
involved _ith the interaction of the blade with its vortex wake.
The operating conditions of a rotary wing are such that its wake
is not carried away by the free stream velocity as for a conven-
tional wing, out rather spirals underneath the rotor disk. This
wake may be considered sheets of shed and trailed vorticity. The
outboard edge of the sheet quickly rolls up, the vorticity be-
coming highly concentrated about a line trailed from the tip of
the rotor. Megions where the Olade passes close to tip vortices,
its own and those from other blades are numerous, and are quite
important because of the strong downwashinduced at the blade.
Once the geometry of the vortex wake is known, it is necessary to
have an accurate method for the calculation of the airloading in-
duced on the blades by the tip vortices. The accuracy of the



airloads in current calculations is restricted by the use of lift-
ing line theory. For the large variations of the downwashalong
the span associated with the nearby vortex, lifting llne theory
is not valid; moreover, this theoretical limitation is compounded
by the practical difficulty of handling in sufficient detail the
shed and trailed wake induced by this vortex. Therefore, it is
necessary to turn to the more accurate lifting surface theory to
obtain the vortex induced alrloading.

The application of conventional lifting surface theories to
the calculation of the vortex induced airloads is prohibited by
the extensive calculations involved in these methods alone. What
is required is a lifting surface solution that may be directly and
simply applied in the highly iterative calculation of rotary wing
airloads. The proper procedure is to construct a sufficiently
general model for the vortex induced airloads problem, and to ob-
tain the loads in this model using lifting surface theory. Then
the solution for this model problem may be routinely applied in the
calculation of rotary wing airloads. The development of this model,
its solution, and its application is tne subject of this report.

The use of lifting surface theory does not, of course, ex-
actly solve the vortex induced airloads problem. There are first
the limitations involved in using linear, planar lifting surface
theory. Moreover, lifting surface theory is a solution for poten-
tial fluiU flow, thus viscous aspects of the pro01em are completely
neglected. The effects of viscosity in the vortex induced airloads
problem will not be further considered in this report.

The problem which is the subject of this report has not be-
fore been approached directly; it is one of the steps that remains
to be completed in the development of an accurate theory of rotary
wing airloads. The aerodynamic bases of the problem are, however,
well established. Miller (Refs. 1 and 2) and others have developed
procedures for the calculation of rotary wing airloads using



nonuniform downwash. This work showed the importance of obtaining
the loads from the actual downwashinduced at the rotor disk 0y the
vortex wake of the blades. While the use of nonuniform downwash
allowed a significant improvement in the prediction of airloads,
there are still features that should be treated more accurately.
One of these is the wake geometry, and a major effort has been
made to calculate the self-induced distortion of the geometry of
the vortex wake, for example by Scully (Ref. 3) and by Landgrebe
(i_ef. 4). The basic features of the airloads calculation procedure
using lifting line theory are sufficiently understood that it is
now possible to direct attention to the construction of a practi-
cal method of using the more accurate lifting surface theory.

The kernel function formulation of planar lifting surface
t_eory was constructed by Watkins, Runyan, and Woolston (Ref. 5)
and others. Practical methods for solving the integral equation
for the pressure on a wing, using assumedpressure modes to con-
vert the integral equation into a set of linear algebraic equations,
were developed by Watkins, Woolston, and Cunningham (Hef. 6). A
survey of lifting surface results and methods, including multiple
and nonplanar surfaces, was made by Ashley, Widnall, and Landahl
(l_ef. 7) and a more recent survey is that of Landahl and Stark

(Ref. 8). The methods that have been developed for the solution

for lifting surface pressures involve the conversion of the inte-

gral equation into a finite set of algebraic equations; in the

more accurate method, using assumed pressure modes, the coeffi-

cients of the algebraic equations are integrals over the wing

surface, which must be evaluated numerically. The amount of cal-

culation involved in this method, however, prevents its direct

application to rotary wing aerodynamics. The simpler method of

representing the lifting surface by a lattice of vortex lines in-

volves less calculation, but the accuracy is highly dependent on

the skill with which the lattice elements are positioned. Using

this method for a blade in the highly nonuniform downwash field



of a rotor disk, particularly for configurations where tip vortex
induced loads are important, would be impossible to do with con-
fidence. Not only is the downwasnfield complicated, it is also
not known in advance, but must be calculated iteratively with the
loading; moreover, the vortex wake as well as the blade must be
correctly represented by a vortex lattice.

While the problem to be solved here is to obtain the pres-
sure induced by a vortex on a lifting surface, it will be seen
that the proper formulation will be more analogous to compressible,
two-dimensional, thin airfoil theory. The kernel function formu-
lation of two-dimensional airfoil theory was constructed by Possio
(as in Ref. 9). This problem involves also an integral equation
which must be inverted to obtain the pressure on the airfoil, and
again the amount of calculation involved prevents the direct ap-
plication of this problem to rotary wing aerodynamics. Amongthe
many treatments of incompressible, two-dimensional, thin airfoil
theory, that of von Karman and Sears (Ref. 10) will be most con-
venient here. These methods that have been developed for lifting
surface theory and thin airfoil theory will be extended, and
combined, here to obtain a solution for the vortex induced air-
loads problem. Of particular importance is the kernel function
(integral equation) formulation, which is characteristic of lifting
pressure distributions.

Somework has been done on the vortex induced airloads prob-
lem, although none in a form directly applicable to rotary wing
aerodynamics. The loads induced on a finite wing in a uniform
free stream by a vortex perpendicular to the span direction have
been obtained using the vortex lattice method of lifting surface
theory by Kfoury (Ref. ii), and using the assumedpressure modes
method by Silver (Ref. 12). The difficulties encountered in choos-
ing the proper lattice positions or the proper pressure modes, as
well as the extent of the calculations involved in either of these
methods, confirm their inapplicability to rotary wing airloads



calculations. Lifting surface theory (the vortex lattice method)
has been used by Cummingsand Kerwin (Ref. 13) to obtain the loads
on a marine propeller; its use was necessary -- and possible --
because of the small aspect ratio of the blade rather than because

of the importance of vortex induced loads, and again the calcula-

tions involved were extensive.

All of these applications of lifting surface theory illus-

trate the importance of develop]n_ a solution for a model problem

that may then _e u_ed to calculat_ rotary win_ airloads. Only if

such a solution can be obtained without the computational diffi-

culties of conventional methods, will the accuracy of lifting sur-

face theory become available to rotary wing aerodynamics.

This report presents the development of a model problem for

vortex induced airloads, its lifting surface theory solution, and

its application to the calculation of rotary wing airloads. The

model chosen is that of an infinite aspect ratio wing and a

straight, infinite vortex at an arbitrary angle with the wing, in

a compressible free stream (see Section 2.1.2). The problem is

generalized to include any convected, one-dimensional (depending

on only one variable) downwash field in the plane of the wing.

Using the elementary doublet solution of the acceleration poten-

tial, the problem is formulated as a two-dimensional integral equa-

tion over the wing surface for the pressure. Utilizing the Fourier

transform along the span of the blade, the problem is reduced to a

one-dimensional integral equation for a universal (for all con-

vected downwash fields) pressure influence function, with the span

wave number as a parameter. After deriving the kernel function,

this integral equation is solved numerically for cases in the en-

tire range of geometry and velocity of the model problem. Approxi-

mate analytic expressions for the solution are obtained from the

numerical solution; the Fourier integral then gives the actual

loads on the wing from this approximate solution. The development

of the approximate solution makes it possible to avoid in the



application of the model problem to rotary wing aerodynamics the

extensive calculations involved in the usual lifting surface

theory solutions.

Next the method of calculation of rotary wing airloads

(using lifting line theory) is described in more detail. In apply-

ing the solution of the model problem to the calculation of rotary

wing airloads, a tip vortex near a blade Is represented by a

straight infinite vortex of appropriate strength, position, and

orientation. The downwash due to such a vortex is obtained, and

the lifting surface solution of the model problem is formulated

for such a downwash distribution. Since the lifting surface solu-

tion includes the vortex induced wake behind the blade,

the wake of the rotor is divided into lifting surface and lifting

llne parts and procedures are developed to properly handle the

effects of each. Finally, procedures are developed for the proper

use of the combination of lifting surface and lifting line theo-

ries to calculate the loading on a rotary wing due to the tip vor-

tices, the blade motion, and the rest of the vortex wake.

The application of the model problem to the calculation of

rotary wing airloads is evaluated by comparing the loads induced

by a free vortex on a one-bladed rotor at high advance ratio (see

Section 4.1) as predicted by lifting surface and lifting line

theories. This comparison shows that the use of lifting surface

theory is necessary in order to accurately obtain the loads due

to a vortex closer than a few chord lengths to the blade.

Thus the solution and procedures developed in this report

remove one of the limitations of rotary wing airloads calculations.

They allow the accurate prediction of loads due to a downwash dis-

tribution varying rapidly along the span of the blade, specifically

the downwash due to a nearby tip vortex.

The development of the lifting surface solution for the

model problem will be presented in Section 2. The development of



the application of this model to the calculation of rotary wing

airloads will be presented in Section 3. A comparison of the re-

sults of using lifting line or lifting surface theory to calculate

the airloads on a simplified rotary wing configuration will be

presented in Section 4.

Two sets of quantities are used for nondimensionalization

in this report. The density, wing semichord, and the free stream

velocity (_ , b, V) are the appropriate quantities for lifting

surface theory_ they are used in Section 2, in the lifting sur-

face solution of the model problem. The density, the rotor radius,

and the rotor rotational speed ( _ , I_,_) are the appropriate

quantities for rotary wing aerodynamics, and are used in the re-

mainder of this report. Nondimensional quantities are used ex-

clusively throughout this work.



SECTION2
A LIFTING SURFACESOLUTIONFORVORTEX

INDUCEDAIRFOIL LOADING

2.1 Formulation of the Model

2.1.1 The Vortex Induced Airloads Problem

It is necessary first to construct a model of the vortex

induced airloads problem -- a model that can be solved by lifting

surface theory and solved in a form that can be used to obtain

vortex induced airloads for rotary wings.

The model to be solved here is the general three-dimen-

sional problem of a planar lifting surface in a convected down-

wash field that depends on only one space coordinate. By general

three dimensional is meant a combination of three variables out

of the four possible (one time and three space variables). The

solution is obtained using linear lifting surface theory. It in-

volves the development of the general aerodynamic kernel which

has as recognizable limits the three-dimensional steady lifting

surface kernel (actually the Fourier transform of this) and the

kernel for two-dimensional unsteady harmonic flow. Some singular

behavior of the kernel may be expected as the first of the above

limits is an elliptic problem, while the second is hyperbolic.

It is required that the solution give the airloading --

that is, the circulation, section llft, section moment, and pres-

sure (in series form) -- due to an arbitrary distribution of down-

wash along the span of the blade. Furthermore, it is most important

that the solution be of a form that is applicable in the highly

iterative calculation of rotary wing airloads.

2.1.2 The Model of the Problem

The vortex induced airloads problem is first simplified to

infinite straight geometry, as shown in Figure 2.1. The model



involves a swept, infinite aspect ratio, planar lifting surface
in a subsonic free stream. A downwashdistribution is induced
in the plane of the airfoil (z=O) by a skewed, infinite, straight
free vortex also in an (x-y) plane, and a distance h below the
airfoil plane. As usual for a swept infinite wing, the problem

will be subsonic in nature for

where M_$_ is the Mach number of the free stream velocity

normal to the span direction.

Because of the infinite geometry of the model, the problem

is steady in a coordinate system with its origin traveling with

the intersection of the blade centerline and the projection of

the free vortex llne on the (z=O) plane. That is, in the (x',y')

system defined by

the relative velocity is in the direction of the vortex, and this

must be the direction of the trailed vorticity. In this coordinate

system the vortex is stationary, so the problem is steady and there

is no shed vorticity. A natural coordinate system for the problem

is one with one coordinate (s') aligned in the direction of the

free vortex. Making this transformation, obtain the geometry

shown in Figure 2.2.

In Figure 2.2, the geometry has been nondimensionalized with

the blade semichord b. It is seen that now the model depends on

Just two parameters: the normal Mach number ]_4___$__ ; and

the angle _ +_A_ b

lO



is

The relative free stream Idach number in the (s',r') system

It can be seen that this 14ach number is greater than i for

/__ _(__/_ ; in fact idR--b_ as _÷.J_-¢_

The fundamental influence of compressibility is, however, de-

termined by the normal _4ach number _s-_- , so the character of

the problem remains subsonic. The relative Mach number M R has

_ore geo;_etric t_an physical significance. This parameter re-

flects the change in the nature of the problem from elliptic to

hyperbolic between the limits (_+-_): _ and

(see Figure 2.3). In the first limit the original problem is the

interaction of a blade and a vortex perpendicular to it; the prob-

lem is three dimensional and steady, and so elliptical. The second

limit is the two-dimensional unsteady flow of a point vortex past

an airfoil; the time dependence makes the problem hyperbolic. The

transition between the elliptic and hyperbolic problems occurs at

with the regions as in Figure 2.4.

_ow the model can Oe generalized to allow a more arbitrary

distribution of the downwash along the blade. Consider an arbi-

trary distribution of downwash in the plane of the blade, which is

dependent on only one variable; that is, a downwash distribution

given by

It can be seen that the downwash due to a free vortex can be put

in this form, since the s' coordinate was parallel to the free

ii



vortex direction. This form of the downwash distribution corres-

ponds to a downwash in the original coordinate system (Figure 2.1)

which depends on only one variable -- the perpendicular distance

from the vortex line -- and which is being convected along by the

free-stream velocity (as was the original vortex).

Thus, the model problem becomes an infinite aspect ratio

lifting surface, with a convected, one-dimensional downwash field

in the plane of the airfoil. The geometry is given in Figure 2.2

wlth the downwash given by

The problem is further dependent on the two parameters A_c_5__

and _'_ -__A__ The limits c'_+-A-3 q_

give, respectively, the problems of a symmetric, steady lifting

surface, and a two-dimensional unsteady flow.

2.1.3 Details of the Model

The several coordinate systems which will be used are shown

in Figure 2.5. The various transformations are given below.

12



=- _4/_ + _/_

r-" ,-.SA/_ "+" mA

with the convention, to be used in what follows, that sin, cos, or

tan written alone imply the argument C_4--/L)-
l --

13



The (x,y) system is the original absolute system.

The (x',y') system is the one in which the problem is

steady.

The (s',r') system is the natural coordinate system for the

convected velocity field, since the downwash then depends only on

the coordinate r'

The (s,r) system is the one in which the problem must be

solved to obtain the circulation. One coordinate is along the

span (so the Fourier transform may be used) and the other in the

s' direction (along which must integrate to obtain the circula-

tion). The s metric has been stretched so the blade leading and

trailing edges are given by s = _6 i.

The (sA,r A) system is the one in which the problem must be

solved to obtain the loads. One coordinate is along the span

(so the Fourier transform may be used) and the other normal to the

span direction (along which must integrate to obtain the section
A

loads). The blade leading and trailing edges are given by s = 4. i.

All the systems except (s,r) are orthogonal. All the

origins lie on the blade centerline. The third space variable for

all systems is the z coordinate, directed upwards.

The problem is nondimensionalized with ( _ , b, V).

The downwash is positive directed in the negative z direc-

tion.

The range of the parameter _+_/h) can be restricted by

symmetry considerations to

< c+ +Ju3 <Z

For the case o _ C__A.> (_ the solution may be obtained by

making the substitutions _5 t-A-) _ _ - (_ +-A-b and

_-A ==_ -- v-A

14



While the solution will 0e obtained for the general downwash

w(r'), the free vortex case is useful as an indication of the form

of the distributions to which the solution will be applied. The

downwash due to a free vortex in the plane z = h is given by

Z_bV rvz _ j_.z

For later use, the Fourier transform is also required. The Fourier

transform of w_ with respect to r' is then

The Fourier transform is used to obtain the lifting surface

solution. The definitions of the Fourier integral and Fourier

transform to be used here are

bc_

- 1and __ _ _(_) _ _

The following notation is convenient:

means _(_)- -i- I _ _,)_'_f-_

2.1.4 The Nature of the Solution

The formulation of the model and obtaining the solution

involves several steps in reducing the problem to a tractable form.

Fundamental to the solution is the use of linear lifting surface

15



theory; that is, determine the loads on a planar lifting surface

from the kernel function solution of the linearized equations of

motion of the flow. Thus many effects, such as those due to thick-

ness, to viscosity, or to vortex bursting are immediately ignored.

Lifting surface theory allows the solution to be obtained for a

wing with arbitrary planform and downwash distribution, including

compressibility and unsteady flow effects. This is the general

problem in four dimensions: (x, y, z, t). However, the use in

helicopter airloads calculations requires the solution in compact

form for a general downwash distribution. The problem must be

simplified further so the lifting surface solution may be obtained

for as few parameters as possible, and then the solution may be

routinely applied to airloads calculations.

An important step is the simplification of the planform to

an infinite aspect ratio, constant chord airfoil.

Next, the type of downwash field is restricted by specify-

ing that the downwash depends on only one variable, which must be

linear in the spanwise variable. For application to vortex in-

duced loading, the appropriate class of downwash fields is the

convected field, which may be written w = w(r') so there is no

variation with s' The restriction to one-dimensional downwash

fields, together with the infinite geometry of the wing, re-

duces the problem to three dimensions: (x,y and t, z) or (s', r',

z).

Now linearization of the equations of motion of the flow

and the boundary conditions allows the solution to be obtained,

using the principle of superposition, as the solution of an

integral equation. The kernel in the integral equation formulation

is the general aerodynamic kernel function for a planar infinite

aspect ratio wing, involving three of the possible four dimensions.

The particular combination of the dimensions is specified by a

geometric parameter, (_ +__._ .

16



Compressibility effects are essential to the problem, thus there

is an additional parameter A__c_ • The integral equation is a

two-dimensional integral, over the wing surface. Since the de-

sired results are only the loads at z = 0, the problem reduces to

two dimensions. (sA, rA).

The two-dimensional integral equation still involves a

solution for every specific downwash distribution, even though

the problem has been already restricted to one-dimensional down-

wash fields. At this point, however, the infinite geometry of the

wing allows the important step of the introduction of the Fourier
A

transform along the span variable. This replaces the variable r

by the wave number _, which appears simply as a parameter. Thus,

the problem is reduced to one dimension: (sA).

Now the problem has been formulated as a one-dimensional
A

integral equation in the chordwise variable s There are three

quantities appearing as parameters in the integral equation:

Math number _,_c__ 5 _4-

angle C'_ + _A_>

and wave number

There is an additional parameter implicit in the selection of the

class of downwash fields. Here it is possible to restrict the prob-

lem to convected fields.

The reduction from a two-dimensional to a one-dimensional

integral equation is primarily of calculational significance. The

use of the Fourier transform has a more important result. Because

the problem has been restricted to downwash fields dependent on

only one variable, the application of the F.T. with respect to the

span coordinate changes the downwash to a separable function of

the wave number and the chordwise coordinate. The functional de-

pendence on the chordwise coordinate will be known. The dependence

on the wave number will remain arbitrary, but because the wave

17
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number appears only as a parameter -- and because the integral

equation is linear -- this function may be moved inside the inte-

gral equation. Thus, the solution of the problem involves the

solution of a one-dimensional integral equation for a universal

load lng function which depends on the class of downwash fields

chosen (here the convected "field) but not on the particular down-

wash distribution from the class.

The reduction of the solution to a universal loading in-

fluence function for convected velocity fields is essential to

producing a solution applicable to the calculation of rotary wing

airloads. This formulation is accomplished by the use of the

Fourier transform along the span, and depends on several features

of the model: first, linearization of the equation of motion and

boundary conditions; second, the infinite geometry of the wing;

third, the restriction of type of downwash field to those dependent

on only one variable.

Obtaining a numerical solution for the universal loading

functions will not be sufficient, however. Numerical results

may not be conveniently used to determine actual loadings, par-

ticularly with the results in terms of wave number. Thus, the

exact numerical solutions must be used to produce approximate

analytic solutions. These approximate influence functions, to-

gether with the Fourier transformation of the actual downwash

distribution may be used to obtain the airloading by means of the

Fourier integral.

2.2 Liftin_ Surface Solution of the Problem

2.2.1 Equations of Motion

The solution is most conveniently formulated in terms of

the acceleration potential _. The linearized equation of motion

is

18



where

Here _ is the velocity potential. The boundary conditions are

on the airfoil

and with p = the perturbation pressure,

off the airfoil

Again, the problem has been nondimensionalized with (_ , b, V).

The natural coordinate system for the present problem is

the (s',r') system_in which the problem is steady. In this system,

the equation of motion becomes

where

The boundary conditions for the convected downwash field are

and

on the airfoil

off the airfoil

It is seen that the relative Mach number

19



M_s-A-

does indeed determine whether the flow is basically elliptic or
hyperbolic. For the elliptic case, the flow is llke the three-
dimensional steady flow problem; for the hyperbolic case, the flow
is like the two-dimensional unsteady problem. The domains of the
two types of flow were shown in Figure 2.4. In the actual deriva-
tion of the integral equations and their kernels, it will be neces-
sary to treat the two cases separately, because of the fundamentally
different nature of elliptic and hyperbolic elementary solutions.
First, though, the general solution procedure will be developed.

The relation between _ and + will be integrated in the

(_,r) system. In these coordinates

which may be integrated to

which can be rewritten as

(where 50 -- S-- _" )

.A.

which is more convenient because of the constant limits of inte-

gration.

2.2.2 Formulation of the !ntesral Equation

An integral equation for the airfoil loading will be ob-

tained from the elementary solution of the equation of motion,

using the principle of superposltion. The integral equation will

first be derived in the (s,r) system.
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The elementary lifting solution for the acceleration poten-
tial is the dipole solution, denoted by _ Using superposition,
the acceleration potential at an arbitrary point due to a lifting
surface may be written

where

Evaluating this for a point on the airfoil, being careful of the

limiting process, can identify (with the proper choice of the

constant in A_ )

L Cs),-') =--*'-p ---- ._"+" "-ACs_¢-')

where Ik= upper-lower and L(s,r) is the airfoil loading. It is

seen that taking the integral only over the airfoil surface auto-

matically satisfies the boundary condition that

--_- _ -- _ off the airfoil.

This is the advantage of the acceleration potential formulation.

Now for the boundary condition on the airfoil. Hecall from

above that

JP -: _o qJ Is. =-So-_, aC;, /_.._s A-

The boundary condition to be satisfied is

Combining the two equations gives

on the airfoil

Now

and for convenience normalizing the loading, gives the required

introducing the result for @ in terms of the loading L(s,r),

21



integral equation:

where _ ----i- (/_s_ _

Now writing the pressure L(s,r) as a Fourier integral

and taking the Fourier transform of both sides of the integral

equation with respect to r, obtain

where the kernel is

and

Z.'rr ¢.,_../L. .,¢.-

is the universal loading influence function.
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He re

so

The integral equation in the orthogonal airfoil coordinates

(sA,r A) is obtained in a similar manner. Writing _ in terms of

the airfoil loading

have

Then satisfying the boundary condition on the airfoil gives the

integral equation

Note that the integral over the wake ( _ ) must still be in the

free stre_ direction, that is, along the s coordinate.

Now writing LA(sA,r A) as a Fourier integral

_A

and taking the Fourier transform of the integral equation gives

_'_,_ ¢,-_I_'_k_{__/_b_-_ = -_;_ _'_

where the kernel Is

23



and

is the universal influence function.

Here

and so

form

In these results, the wave number has been written in the

?ls;,_ (si_, = s_, c @÷..___ "b

That this is indeed the significant wave number is shown by the

detailed derivation of the kernels. It will be seen that it has

the limits

_ -- span wave number

-_ 5_ _ reduced frequency

This is a reflection of the fact that the natural coordinate system

is the (s',r') system. Recalling

then the properties of Fourier transforms imply that _2._

is the natural wave number.

The derivation of the kernels will also show that
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Recalling the coordinate transform between the (s,r) and (sA,r A)

systems :

,-o = roA +

and that the kernels are themselves Fourier transforms (K wrt r o

and K A wrt r_), the above result follows simply from the proper-

ties of Fourier transforms.

The integral equation obtained is of the form

The kernel KA(or K) is the general aerodynamic kernel for

the three-dimensional, planar lifting surface problem. Besides

the explicit parameters s A (or s o ) and _J._ , it depends on
o

the two parameters _+-A-_ and AA_o__/L . The kernel depends

on the airfoil configuration alone, not on the downwash distribu-

tion or any assumptions made about it.

The RHS of the integral equation represents the downwash

distribution. The quantity

J-

and if the assumption that the downwash w depends only on one vari-

able (so that the F.T. is separable) was not made, this would still

be the proper formulation of the lifting surface integral equation_

to be solved for the particular downwash distribution. The quantity

RHS may be interpreted as the downwash variation in the s A (or s)

direction of the component of the downwash with r A (or r) wave

number _ . For the limit C_,.A-_W it is the downwash distribu-

tion of the component with harmonic time dependence, at reduced

frequency k. Note that the s A direction is the chordwise direction,

25
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and the s direction is the relative free stream (in the (s' , r')

system) direction.

The function _A (or G) is the universal loading influence

function. For a nonseparable downwash Fourier transform, it would

be replaced by Just the F.T. of the loading, _A (or _). Because

the F.T. of the downwash is separable, and the integral equation

is linear, it is possible to obtain the solution for an entire

class of downwash fields (convected fields here) in terms of a

single universal function. As a solution of the integral equation,

it depends on the kernel, and thus on the wing parameters tv_sJ_.

and C_+_A__ ; further, it depends on the RHS and thus on the

class of downwash fields chosen. Given the influence function

_A (or G), the F.T. of the loading _A (or _) is obtained by multi-

_" _]_b_ and the actual loading from that as aplication by _

Fourier integral.

The negative sign before the RHS of the integral equation

is due to the convention that the downwash w is positive directed

downward (in the negative z directlon). It reflects the fact that

a positive downwash gives a negative angle of attack and so nega-

tive loading.

The integral equation must be solved for each value of the

parameters

_ _os -/_- and 6_ _.A__

and for a given Mach number and angle must be solved for all wave

numbers _/%_ .

The integral equation must be solved for _A (or G) as a function

of o-A (or o-) for a given _/._ . The coordinate sA (or s) re-

mains a free parameter; the integral equation must be satisfied

for every value of sA (or s) in the range -1 to 1. This provides

the infinite data necessary to determine _A (or G) uniquely for
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every q-A (or v- ) in the range -1 to 1.

2.2.3 Representation of the Loading as a Series

The airfoil loading is now represented as a Glauert series

of the form:

A

and with similar forms for L(s,r), LA(s A _J_ ) _(s _J_)

_A(sA, 9/_), and G(s,OJ_ ).

Substituting these forms for _A and G into the integral

equations gives:

_, (I ;.,_J.,9_ _'_-_s

and I

Truncating the sum and choosing a number of collocation

points equal to (or greater than) the number of retained terms,

the integral equation becomes a set of simultaneous linear alge-

braic equations, which may be solved (in a least squares sense)
--A

for the gn or gn at a given _/,,$,_ .

The pressure on the airfoil LA(sA,r A) has been represented

as a Glauert series. Now it is necessary to obtain the circula-

tion, section lift, and section moment in terms of the coefficients
A

of the series. These are required as a function of r .

The circulation about the blade is obtained from the ex-

pression given above for the velocity potential:
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5

- _ __-_

from which, at z = O, have

!

Thus, the circulation is
I

----- ls

Substituting for L(s,r) and integrating

..Qo (r') .

This is put in terms of rA by noting that _ is _
A

blade trailing edge, s = i, where

_ C"A -* _..-_s/__i_

ThUs,

at the

r= r A _ cm_/s)_

Now it is evident why the solution for the loads in the (s,r)

system is required. The circulation is obtained from the integral

of the velocity potential around the blade. The velocity potential

is obtained from the acceleration potential, that is from the

perturbation pressure, by integrating in the direction of the rela-

tive free stream, the s direction. The r coordinate,of course,

must be directed along the span.

The section llft and moment are obtained by directly inte-

grating the pressures. The lift and moment on sections normal to

the span direction are required, so the loading in the (sA,r A)

system is needed.
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The section lift, positive nose upward is

I --I

Substituting the Glauert series gives

The section moment, positive nose upward, about an axis
A

at s = a, is

I

(c_'_ -- _ (-_-_-_ C_ - sA_ D _M
I

--I

Substituting the Glauert series gives

_ LCr _} ÷ _(rAb?v_(c_) _ (_

A
where MQC is the moment about the quarter chord at s =-1/2,

It is now possible to obtain the F.T. wrt r A of the loads

as :

and
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for

2.2.4 The Results of the Solution

The solution of the integral equations will be in the form

w

c.o_ s+

(71,9¢.,,..,%

-.,,-

These are the loading influence functions.

A
forms with respect to r .

All are Fourier trans-
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The factor _r_ is the two-dimensional lift curve slope.

The factor _/_ : _/_-_M_ _ is the Prandtl-Glauert

compressibility correction expected for a swept wing.

The factor cos._ appears because the loads and downwash

were nondimensionalized with the actual velocity V, rather than

with the physically relevant velocity _ cos_. That the cos___

appears in the loads but not in the circulation can be viewed as

a reflection of the general result that the circulation depends

on the induced velocity but the loads depend on the induced angle

of attack.

The factor _I_ appearing in gc results from the fact

that the circulation is determined by a quantity at the trailing
A

edge, while the r axis lies at the blade centerline.

From the numerical solution of the integral equation, it is

necessary to obtain approximate analytic forms for the influence

functions. It is the inverse transforms of these approximations

which will be applied to the calculation of rotary wing airloads.

Results in terms of wave number are generally not too meaningful

physically. The value of the influence functions lies in their

being universal functions, independent of the particular downwash

distribution, and it was to formulate the solution in this manner

that the use of the Fourier transform was essential. Thus approxi-

mating the influence functions is indeed the proper means to obtain

an approximate solution for the vortex induced airloading.

2.3 The Kernels

2.3.1 The Elliptic Kernel

The elliptic domain is given by

The equation of motion can be written as
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where

and with the boundary conditions

on airfoil

off airfoil

The doublet solution of this equation is

where "-gZ-" S" ___I > _:_ --. I.., j_'

and the doublet is located in the z-O plane.

system.

the s metric has been stretched so the Jacobian J-- _s%v') _ 3--

and the blade leading and trailing edges are given by s = ± i, may

write the superposition integral as

-p-- _ -- _ ._ A(%._bS_ a _ ,9,--_._

Then being careful about the limiting processes, find at the air-

foil

The integral equation will be obtained first in the (s,r)

Recalling that although the (s,r) system is nonorthogonal,

= upper-lower

so let

As before, the velocity potential is
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Thus

=-$o__

= $°=_.-),

Performing the operation _ _z/_ z the boundary condition
then gives the integral equation

I
5o= _o->,

Now writing L(_-- , _ ) as a Fourier integral, the equation may be

written

This is recognized as a Fourier integral representation.

in brackets is then the F.T. of w(r') wrt r.

tegral equation

The term

Thus obtain the in-
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where

(%Q)_.G.,')--

and the kernel is

I I
$= :-_°-'X

To evaluate the kernel, it is helpful to first replace the ]_

operator. Thus the kernel actually is

X Co S,,= $e-_'

Now writing

[_:'_"]I = [_ ,<- __o->,',/c_r_'_-]_ + [ c_.-',,'__/_-__
_o=.(o->,

one can perform the r ° integration to get

where K1 is the modified Bessel function of the second kind.

For z = 0 this is a singular integral of Mangler's type,

so some care is needed in evaluating it further. For this type

of integral the result of integrating and taking the limit as z-4_O

may be obtained by simply setting z = 0 and ignoring the singu-

larity. That this procedure is valid can be verified directly for

the limit _/_Jv,_------O, for which obtain
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The procedure for further evaluation of the kernel is sug-

gested by similar steps in the derivation of the hyperbolic kernel_

which is given in Section 2.3.2.

The kernel may be rewritten as

 Zko +

Substituting for _ _o

satisfies the PDE

give s

_ _/_ _5_sl_ ____

where the limit z--_ 0 has also been taken.

parts twice, the first term gives

Integrating by

-I-
c_lsj_b _" ( _ _',_1:_,_, c_,S _s/_

oC_" )o @_

Now writing
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(from Watson, Ref. 14) and simplifying the notation, the kernel is

written as

.3_

where

_. = _ ___

_ = _ --(,,_s..K")_-

36



Now we will derive the kernel in the --(sA,rA) coordinate

system. Writing the pressure as

the boundary condition gives

o ,. ÷,-

Substitutingfor LA(_,-- .._A ) as a Fourier integral and taking the

F.T. wrt rA of the integral_ equation obtain

whe re

and the kernel is

If-_ [_'_+ _,--;_---]_ _,m-,__

As before, replacing the ___ process and writing

A
one can perform the r integration to get

From this form recognize that
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Several limiting cases of the elliptic kernel are of in-

terest. First consider the lifting llne limit, @#_-q_ o . For

@/f_ ----o have

So the integral equation becomes

which inverts directly to

or

__ --_L_

j

2_

_rY

J .)

That this result is the lifting llne limit can be seen by recalling

that

_)-_'_, _ _ _ [dimensional wave number]

Thus as b--_-0, _/__ 0 for any finite dimensional wave number,

and b--jb 0 is the lifting line limit. The integral equation is

reduced to the two-dimensional steady integral equation. This is

the usual result of lifting line theory that the inner problem is

locally two-dimenslonal, the influence of the finite span entering

only through an induced downwash at the airfoil section due to the

trailed wake. Here, for a given downwash field, as b--_ 0 the
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wake induced velocity also---_0, so the two-dimensional problem
involves only the convected velocity field.

In the limit C_ +_A__ ---_ , the vortex and blade are

perpendicular, and the kernels reduce to

I.
where c_ : l_'_Z_i_2 , and _----_i_ . The kernel is real, due

to the symmetric wing geometry. The integral equations in (s,r)

and (sA,r A) become identical, for these coordinate systems are

identical; this means the solutions for the lift and the circula-

tion are equal. The Mach number dependence is simply a weakly

singular h_/_ factor. In this limit _/5i_ becomes Just the span

wave number

form.

here

- S

For C_+jt}__--_-- the kernel may be put in an interesting
Z_

Starting with the definition of the kernel, which becomes

since the three systems (s',r'), (s,r), and (sA,rA)become identical,

and then performing the _ integration gives

- _ L /_ + _'-r_c'

(using also that _o< ).
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This result can be recognized as the Fourier transform of the

steady, three-dimensional lifting surface kernel_whlch is the ex-

pected result for the limit (_ +_A-_ : !K7_

2.3.2 The Hyperbolic Kernel

The hyperbolic domain is given by _4__A_ >_C___').

The equation of motion may be written

+ -+- __--o

with the boundary conditions

/e --_ C.,.b(" _"_" % on airfoil

--._p _ _ _ O off airfoil

The derivation of the integral equation and kernel follows

Possio's derivation of the two-dimensional unsteady kernel (as in

Ref. 9). The solution is not as direct as for the elliptic case,

because of the singular nature of the hyperbolic doublet solution.

The source solution of the equation is

_i_

CD

for _a)o and in the rearward

range of influence.

Otherwise
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for source in the z:0 plane.

The integral equation will first be obtained in the (s,r)
system. Using superposition, the potential due to a distribution
of sources on the airfoil surface is

The integration is over thc domain of dependence of the point
(s',r',z), which is the intersection of the airfoil surface (on
which the sources lie) and the forward characteristic cone from
the point (s',r',z). This intersection area is bounded by a
hyperbola which has characteristic coordinates, (s*,r*), as
asymptotes. See Figure 2.6. The boundary is the hyperbola given
by

This gives the limit of the integration as

Next, writing A( _- , _) as a Fourier integral, the potential may
.#

be written as

_- _$
Then writing

-- [_o_- _ol:,,r,.-3'-- [_o_I_ _"- !___

The _ integration may be performed to give
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where .c,_._ --_D_-%Yo is the Hankel function of the second kind.

Now the doublet solution may be obtained by differentiation

with respect to z:

Thus obtain

O

This form is used to evaluate A(s,r). By letting (s',r',z) ap-

proach the airfoil surface, with some care about the limiting pro-

cess, obtain

= upper--lower

Thus let

Then substituting for A(s, _ ) and going back a step, before the

operation _/_ was performed, have

/
As before the boundary condition and the equation for

!

may be combined to give
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Thus obtain the integral equation

Oo (<+) ---- <77,_ _ e_

Then by taking the F.T. wrt

where

r of this equation, obtain

2-I-_

and the kernel is

Z_x z

_--_o _ z , .o

Z _

The kernel may be evaluated by noting that

satisfies the PDE
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Then substituting for _ _)_a gives

-- O

"4-" '_'--._-'07-__ (',,,_ _;lj_:.,., (_o-',,,)/,_ _;

Zntegrating the first term by parts twice and taking
obtain

_ (_'.]_') =

l

_Wow writing

(}_ e.--" _t_'_ (%o--_,b/,_ _ ,-_S t,(_")
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and using

___-_o C_I_3 __ ---
2 .4_÷_

-__- _ _

(from Watson, Hef. 14) and simplifying the notation, the kernel is

written as

_ ¢_°_J_"_-- -_-___° I_ _r_I-_-_¢_'_°'__'_° _°'_°'hi]

where

_ = _ - c._x_ _-
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Now the kernel in the (sA,r A) system will be derived. The

source potential is

\

/So

where is obtained from _= _ --_Z(fo_%%_.--D as

Then writing A(sA,r A) as a Fourier integral wrt r A have

writln_

z _ _z C_ zI_ 2= 3: C -* _ ")

_, + st_ls._-sA=l_s,,,.-__

"-1

integration may be performed to give

Again the doublet solution is

"-_ b-%

and may identify as before

.f
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So letting

obtain

_ ,r-_-1
Z. -'r'_

The boundary condition is

t,o(c"3

Substituting for _ obtain

Recalling the trans format i on

So = So--'x

the substitution s = s--_ may be made,to give

c_
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Then taking the F.T. wrt r A of this equation obtain

where

2-r,-

and the kernel is

"rr', ',_t_;,...._..,,. t)_ _;gJ._ <S_-X'h/_,-_

So the integral equation becomes

From which recognize that
&

----- _ '_/_ Ic.a (so -_so*)?e_-3
Certain limiting cases of the hyperbolic kernel are of

interest.

The steady state limit is _/_ --_ O. For _J_-_- ¢D

the kernel becomes

A_

s2

which inverts directly to
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This is recognized as the steady solution for an airfoil in uniform

downwash. That this corresponds to the limit _J_-_ 0 follows

from the fact that for the hyperbolic domain the proper interpre-

tation of _J_ is as a reduced frequency.

The case C_*_t _) _ _ should be investigated since it

involves _g_+_=O which introduces some apparent singu-

larities in the problem formulation and the kernel. This is en-

tirely due to the formulation of the geometry in a way that em-

phasizes the three-dimensional rather than the unsteady flow as-

pects of the problem.

This case may be studied by first rewriting the problem

statement in terms of the (sA,r A) system and taking the limit

_+_jt_--_ _ Then in terms of the velocity potential, have

PDE:

Pressure; Jt[

b.c.:

on the airfoil

Now compare this with the usual formulation of the two-

dimensional unsteady thin airfoil problem. With the geometry

as shown in Figure 2.7, one may state the problem as
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PDE: (

pressure :

_ _ 6--b__C--X_ on the airfoil

b.c.: %

As expected, it is seen that the limit (_+Jt-_--_ _T-

corresponds exactly with the two-dimensional unsteady flow problem,

with the following interpretation of the variables:

rA sin = t

A
s = x

Since r A sin is the proper nonsingular span variable, it is seen

that indeed the proper wave number is:

"_/._._ = k = reduced frequency

It is in terms of this wave number that the integral equation is

properly formulated for all angles C___

The interpretation of the F.T. of the downwash is

With the above interpretation of the variables, the integral

equation may be rewritten in terms of the usual two-dimensional

notation as

--I
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where

)

A find as E_+_) -_For the limit of KB

/ _ ,.._._J_-

with these limits the kernel may be evaluated as

A
-_g '_ {_,.___,3 2o/_ _"

Z.
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which can be identified as

K(M;Is A) is Possio's form of the kernel for unsteady two-where
%J

dimensional flow (as in Ref. 9). The factor _--__ comes

simply from the normalization chosen for the universal loading

func t i on.

2.3.3 Similarity in the Kernels

A number of points may be made about the forms derived for

the elliptic and hyperbolic kernels.

The Hankel function d (_) t'l)
o , 171 is the Green's function for

the wave equation in two space dimensions, with harmonic time de-

pendence (Helmholtz's equation). Thus its occurrence in the hyper-

bolic kernel. Similarly, the modified Bessel function Ko,K 1 is the

Green's function for Laplace's equation in three dimensions, with

one space variable (spanwise) replaced by the wave number; that is,

with the equation operated on by the F.T. wrt r A Thus its oc-

currence in the elliptic kernel. The Hankel function has the char-

acteristic wave behavior of solutions of hyperbolic equations,

and the modified Bessel functions have the characteristic exponen-

tial decay behavior of solutions of elliptic equations.

The two kernels are actually complete duals. Using the re-

lations

_ I.-t<='><>

and noting that

can show that
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and

The derivation of the integral equations and kernels was quite

parallel, with the exception that the initial steps for the ellip-

tic case are more direct. This difference is due to the singular

nature of elementary dipole solutions of a hyperbolic equation;

for the elliptic equation the characteristic exponential decay of

disturbances results in all order elementary solutions being non-

singular.

The limit _]_O has been given two interpretations: as

the lifting line limit for the elliptic equation; and as the

steady state limit for the hyperbolic equation. It is equivalent

to removing the spanwise variable from the elliptic problem or the

time variable from the hyperbolic problem. In both cases there

remains a two-dimensional problem, and the solution is that for a

two-dimensional thin airfoil in a uniform downwash. These inter-

pretations should strictly be applied only to the cases {+tJC)

and d_-__A_- _ , respectively. They are applicable to the

general geometry in the sense that in the elliptic probl_m it is

the spanwise space variable that is dominant while in the hyper-

bolic problem it is the time variable that is dominant. In fact,

this interpretation of the significance of the elliptic and hyper-

bolic domains is more important than the exact meaning of the

limit _]_ _ O.

2.3.4 The Incompressible Two-Dimensional Kernel

The double limit J_A_s-J_ _ 0 and C_+_-_T is rather

special. Both the elliptic and the hyperbolic kernels as formu-

lated are singular in this limit. Examination of Figure 2.4 shows

that this limit is the coalescence of the elliptic case, the hyper-

bolic case, and the case _:_O (yet to be discussed). This
\
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exceptional behavior arises because this limit is the problem of
a two-dimensional thin airfoil in an incompressible flow. For
_os-/[_ -- 0 and C_+-_-_ _Z- , the problem is elliptic, and

three-dimensional for all C_ _-_A._ :_ r_- ; for exactly F_@J._= T_

there are no span effects and the problem is two-dimensional. For

C_-_-_--_- and /_A_---_ 0, the problem is hyperbolic, and

unsteady two-dimensional for all Iv_-_0; for exactly _A_5-A- = 0,

there are no unsteady effects in the equation of motion (only in

the boundary conditions, that is due to the wake) and the problem

is two-dimensional. In both cases, the result of the limiting

processes is the two-dimensional Laplace's equation. Actually, it

is evident that this case does not properly belong to either the

elliptic or hyperbolic domain, rather it is a special case of the

transitional case _ = B = 0 (treated in Section 2.3.5). However,

while the case is singular when viewed as a limit of either the

elliptic or hyperbolic case, as a two-dimensional problem it is

expected to take a much simpler form, as will be evident in the

kernel, indeed, for this case and this one alone, the solution

is obtainable in closed form by classical techniques.

The two-dimensional incompressible kernel may be obtained

from the present development by going back to the definition of

either the elliptic or hyperbolic kernel. Choosing the hyperbolic

kernel

In this form the limit _o_ = 0 and C_+-K_ _-_ gives
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C,# +_A.,'_ ..4).'rr .)
/v, ,.o .s..A..--_ o

"_)g,-, ">, g_N

The appearance of the wave number in the proper form _J_ is

familiar now. This integral is a singular one of Mangler's type.

It is evaluated (taking some care with the singularity) to give

5o

o "t:

where _ --_/_,C$o _) as usual and _ is Euler's number. The

integral that appears here is the nonsingular part of the Sine and

Cosine integrals which appear in the usual formulation of this

kernel (see, for example, Ref. 9).

The kernel in the (sA,r A) system is then

Q_., (

c

The solution for the loading on a two-dimensional thin air-

foil in an incompressible flow has 0een obtained in closed form by

many means. The most convenient method here is ti_at of von K_rman
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and Sears (Ref. 10)_as formulated in Ref. 9.

Consider a convected downwash field given by

Then writing

have these relations:

definition of circulation

vorticity on airfoil

vorticity in wake

circulation of the airfoil

conservation of vorticity

a solution of the PDE, satisfying the boundary condition at the

airfoil

Kutta condition

---rv- i i

The geometry is as in Figure 2.7, with _$_-= 0 and a unity

free stream velocity. The lift and moment are given by
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and i
,_÷_bl _ ,_

By using the Fourier transform wrt t the solution may be

obtained in terms of the reduced frequency. In the notation of

the present problem, the solution is

,l ,.j....
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whe re

c =

and Jo,Jl are bessel functions. The singular term in the Glauert

series representation of the pressure may also be determined as

and it may be also shown, as by Garrick (Ref. 15), that

This is the solution for the loading due to a sinusoidal

gust. That all terms in the Glauert series except the leading one

are identically zero is another part of the exceptional nature of

this case; it is not true for any other solution, even for the

transitional case _ = B = O.

The behavior of the leading term of the series and the llft

is characteristic of the solution found for all values of the

parameters }V_e.._$_A.. and C_-e-A_ Thus the asymptotic be-

havior of the solution is of interest. Find for small $/,9_

%L Ol,,c,_) "-'

and for large -l)_

_ _ . ",]
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To be noted is the infinite derivative at _/_ : 0 and the linear

phase and decay ilke (_/_)-1/2 as _/.QC_ -a_

2.3.5 The Transitional Kernel

The transitional case is given by /_s-_ _ (_+_A_ , or

: B : 0. For this case, the elliptic and hyperbolic kernels as

formulated are singular, Just as for the two-dimensional incompres-

sible limit, which is in fact simply a special example of the pre-

sent case. Indeed, here also the equation of motion is reduced to

the two-dimensional Laplace's equation, namely

+

However, while the two-dimensional incompressible case is a proper

physical limit, in the general transitional case the singular

limits of the kernels and the reduction of dimensions in the equa-

tion of motion are indications of a violation of one of the critical

assumptions of the solution, namely the linear assumption.

To examine the nature of this case, it is necessary to re-

turn to the exact equation for the velocity potential in three-

dimensional, unsteady, compressible flow (as in Ashley and Landahl,

Ref. 16). The equation for the first order potential for

may be obtained, and is of exactly the same form as the equation

for the potential in three-dimensional steady transonic flow.

Physically this is not a transonic flow, of course_ there is no

region where the flow has sonic velocity as long as /%A_wS__9_

There is, however, a phenomenon that has sonic velocity; that is,

the vector sum of the normal Mach number and the speed of convec-

tion along the blade of the intersection of the vortex line and

the blade centerline, which is represented by the relative Mach

number in the (s',r') system
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becomes sonic for the transitional case. It is this coincidence

of the combination of the physical and geometric velocities at the

sonic velocity acting as a disturbance reinforcement process that

makes the linear assumption not valid.

The important feature of the equation for the velocity po-

tential in the transitional case is its nonlinearity. Because of

the nonlinearity, the use of the Fourier transform is not possible,

and the methods used to obtain a solution for the elliptic and hyper-

bolic cases are not applicable. More generally, the nonlinearity

implies that even if the transitional problem could be solved, the

solution would not be in the form of a universal influence func-

tion, for the existence of such a function is the property of a

linear problem. Thus the transitional solution would have to be

obtained for every particular downwash distribution, and even if

these solutions could be obtained, the result would not be prac-

tically applicable to the calculation of rotary wing airloads.

Some insight into the transitional case can be obtained

from a study of the linear equation of motion in the (sA,r A)

system. In these coordinates the equations are

_.)_

and

_-C "+"
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For the transitional case, these become

and

- ÷

Since in the transitional limit

fihis is the same equation given before for the potential. This

equation for the potential shows the nature of the transitional

limit. The coalescence of the sA and r A sin derivatives into a

single total derivative corresponds to the exact coincidence of

the sonic speed and the trace speed of the downwash distribution

along the wing span. This coincidence gives the linearized prob-

lem a two-dimensional quality; disturbances produced by the down-

wash distribution remain exactly in step with it as both are con-

vected along the blade. Of course, nonlinearities destroy the

exact two-dimensional nature of the problem. However the two-

dimensional problem does roughly represent the physical character

of the transitional case, and as a linear problem it does have a

solution of the form required here. Generally the nonlinearities

of the transitional (transonic) equation are not very strong, and

while the linear solution may be expectedto overestimate the non-

linear loads, it will serve as a reasonable approximation. As it

is the only way to obtain an influence function for the tran-

sitional case, the linear solution must be accepted. At least it

will be a valid limit of the linear elliptic and hyperbolic re-

sults.
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The linear transitional kernel is obtained, as the two-
dimensional incompressible kernel was, from the definition of the
elliptic or hyperbolic kernel. With

the transitional limit is

which gives

f't ---_ o

.,re.e-,;.-cso-x_i_ _

(k_5o5 z
I-

_---- _e___

It can be seen then, that

k-,-_So_Sr,,.,_-"b= /_o (so
J

The kernel in the (sA,r A) system is then
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While K T has been written here in terms of the more familiar Ko,

the more proper view is tnat i o is a special case of _'T"

2.3.6 The Linear Assumption

The restriction on the problem due to the linear assump-

tion may now be examined.

First consider the linear assumption for the elliptic or

hyperbolic domains. There the assumption as usual simply requires

that the disturbance level be sufficiently small. An example of

the disturbance is ti_e downwash due to a free vortex. The maxi-

mum vortex induced downwash in the plane of the blade is

c V

The linear assumption is then

or

vo_
<-< 4

For a vortex from a generator of chord c, at an angle of attack o<_,

the circulation is
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Thus, the linear assumption requires

Typically, have _<q e 0.I and 2b/c ._o1.0 so the requirement becomes

>> 0.05 5

For vortices with a reasonable core size this requirement is not

at all restrictive (the effective h is always greater than the

core radius).

As has been pointed out by Miller (Ref. 17), however, a

linear (small perturbation) assumption actually is I%o restriction

at all or, the application of an aerodynamic theory (lifting surface

or lifting line) to the calculation of rotary wing airloads. The

linearization assumption essentially requires that the airfoil be

at small section angle of attack. For large angle of attack this

assumption is not valid, but the airfoil will then be stalled and

thus the linear theory will be replaced by an appropriate theory

for nonattached flow for the calculation of the airloads.

Now consider the linear assumption near the transitional

domain. That is, examine the requirement for the linearization

of the equation of motion. From the exact equation for the ve-

locity potential find that the requirement is

_

For small disturbances this will be satisfied except for where

which is, of course, the transitional limit. Now just considering

the region near the transitional limit, the requirement may be

written
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or

where =_ff_A_oa_&_ is the separation from the transitional limit

_j_. _{_+Jt_ required for the linearization of the

equation of motion to be valid. Typically, have M _ 0.5, and

s_ _ c_ _ o-i , so the boundary of the transitional region

may be considered

Thus it is seen that the nonlinearity near the transitional limit

_s_ _-_ _@_ _-_ is not very great; the transitional

region is rather narrow. Moreover, the width of the region is

proportional to A_o_-A_ As _s_A_ -_ 0 (and so C__/_')-_)

the width of the transitional region also goes to zero. Thus, the

linearization of the equation of motion in the two-dimensional in-

compressible case is uniformly valid for all levels of disturbance

(although linearization of the boundary conditions may not always

be valid).

2.4 The Approximate Solution

2.4.1 Numerical Solution of the Integral Equation

The integral equations have been obtained in the form

I'<_ c_-t_i_<_<_>_J_ _-_.= -U'_'__
--i

and
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I

Substitutlng for the loading influence function as a Glauert series,

that is
_o

where

obtain

and

Since _J_ appears in the integral equation only as a parameter,

the substitution of a series of this form accomplishes the removal
-A

of the desired quantities, gn (or gn ), to outside the integral.

The integrals

--I
and

-- .)

now involve only known quantities, but must however be evaluated

numerically. To do this, it is first necessary to identify the

singularities of the kernels, KA and K. These kernels may be

written as

'--
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and

where

These forms are valid for all values of the parameters _o_J1_

and q'# +-_ The reduced kernels have the properties

KA+Co,_1._...3= o
and

and possess no singularities in soA(or s o ) or in _]_ The in-

tegrals now may be written

I

\

--I

and similarly for the (s,r) system. The first two terms involve the

singular parts of the kernel, but may be evaluated analytically as

--\

Tr- _ ',r- ,_ L I+.¢ .-I ,a-#,
_- ._(s -+,'_+ __'_ -_3- _ [.4>;-'.,___^ -,-)_,_,,__

v', : -'L

T- _-_s C'-, "*") '$' _-_..o.s(,', - _ '._ -1
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The last term may now be integrated numerically since KA* (or K*)

has no singularities in sAo (or so ). Because of the square-root

nature of the Glauert functions fn(sA), this is properly accomplished

by a Jacobi-Gauss quadrature (Refs. 18, 19, and 20) which gives

_-__ )
where

_a "- D

v., _ ..-u.

and

,Sz
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While the reduced kernel KA*(or K_). is not singular at

SoA = 0 (or s o = 0), it does have an infinite derivative there.

This may be seen by expanding the kernels further, obtaining
A

the form for s --_ 0
O

(similarly for K(s ° _I_ )); the term s A in "'IsAt has an infinite

o oA*
derivative at sA -- . This behavior of K (or K*) introduces

O

some error in the quadrature for very small values of the wave

number (_l_ 0.i). However, here the wave number of interest

will be of the order _I_ ---_1.0. A further expansion of the

kernel to remove the singularity in the derivative before perform-

ing the numerical quadrature introduces error for these larger

wave numbers. Therefore, in the evaluation of the required inte-

grals, the kernels were only expanded as above to remove the singu-
A

larlties, but not the infinite derivative at so = 0.

With the integrals evaluated, the integral equations still

_A (or gn ) to be satis-remain in the form of an infinite sum over n

fied at each of the infinity of points of s (or s) in the interval

-i to 1. Since numerical procedures can only deal with finite

data, the higher terms in the sum must be discarded, with corres-

pondingly some loss of information. Thus truncating the sums,

the integral equations take the form
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and 1

The collocation points in sA (or s) are chosen following the

criterion of Hsu (Eel. 18). This again involves a Jacobi-Gauss

quadrature, so obtain

_A

With the sum truncated to N+l terms and choosing a finite

number M of collocation points where the equation is to be satis-

fied, the integral equation has been transformed into a finite
--A

set of linear algebraic equations, for the quantities gn (or gn )

at a given _],_ . For M _ N+l, these equations are solved in a

least squares sense.

The integral equations were solved for _ and _ (and also

gL' gM and gC ) for values of _ in the range

Six terms in the Glauert series were obtained; that is,

satisfying the integral equation in a least squares sense at eleven

collocation points,

The integrals were evaluated by numerical quadrature using fifteen

to twenty points, that is

The Hankel functions and modified Bessel functions occurring in

the kernels were evaluated using polynomial approximations (Ref.20).

The Cosine and Sine integrals in the two-dimensional incompressible
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(and transitional) kernels were evaluated using rational approxima-
tions,also from Ref. 20. The absolute error involved in these
approximations was of the order E = l0 -7.

The accuracy of the numerical calculations was evaluated by
comparison with the exact solution available for the two-dimen-
sional incompressible case. The numerical calculations gave an ab-
solute error of the order of _ = I0 -3, which was sufficient for

the range of Oj_ considered. This error did not depend on the
number of terms in the Glauert series or the number of collocation
points used (the error due to these was of the order _ = I0-5).
Rather it was due to the truncation and roundoff errors in the cal-
culation procedure. The minimums obtainable for these were limited
by the accuracy of the available approximations for the ilankel and
Bessel functions. It was also expected and observed in the results
that the calculations would be more accurate for the elliptic
kernel than for the hyperbolic kernel. The exponential decay nature

of the elliptic kernel resulted in more accurate numerical work.

The numerical calculations described above were carried out

for the thirty-seven cases covering the range of the parameters

as shown in Figure 2.8.

2.4.2 The Approximate Influence Functions

For routine application to the calculation of rotary wing

airloads, numerical results are not very useful. Therefore it

is necessary to use the numerical results to obtain approximate

analytical expressions for the universal loading influence func-

tions. Then these expressions may be used in an airloads calcu-

lation.

First, it is necessary to determine the range of _i_ over
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which the approximations should give valid information about the
Fourier transform of the influence functions in order that accu-
rate loadings may be oOtained from the downwash. Generally, large
and small wave numbers correspond to variations over small and
large r distance (spanwise variable) respectively, so the limits
in _J_ of the accuracy of the approximations correspond to
limits in the allowable variations of the downwashalong the span
for which the loading results will be accurate. Specifically,
very large and very small wave numbers are important for very
close and very far free vortices.

Using the free vortex as an example, have

Thus, for h -_ 1/2 (a reasonable lower limit for usual vortex

core sizes) should need information in the influence function out

to about

This criterion may be examined in more detail. The ex-

ponential form of w--_corresponds to an actual downwash w with a

pair of complex conjugate poles (since w must be real) with

imaginary part equal to h. In terms of the downwasi_ variation,

this means a large variation of w occurs in a range of

An upper limit in _l_ on the required validity of the influence

function approximation restricts the high wave number content of

the downwash w that is allowed for an accurate loading prediction.

In general, let h be a measure of t_e distance over whici_ there is

a large variation in the downwash. Then corresponding limits are

a maximum wave number
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and a minimum variation distance

(and the downwash w reasonably smooth). Again, for a free vortex,

the minimum separation distance is itself a measure of the range

of variation of the downwash. Furthermore, it may be shown that

for a free vortex with a viscous core,

minimum equivalent --separation distance I coreraQlUS

Then the restriction on maximum wave number simply becomes a

restriction on minimum core size,

_minimum _ Q i
core ! -- b

radius/

which is not a difficult criterion for usual applications.

To determine the requirements for small wave number, the

free vortex example is again helpful

For the limit_O, w_nonzero constant independent of h.

Thus the behavior of the influence functions should be approxi-

mated closely for %_-_0. The values at exactly _J_ = 0 are

easily matched. However, the expansions of the solutions for

small _/_ frequently involve logarithmic terms, and the behavior

of these near _l_-_ = 0 is impossible to approximate with useful

elementary functions (that is, functions with inverse Fourier

transforms available in closed form). Thus, there will inevitably

be inaccuracies in the approximate influence functions for very

small wave number. These inaccuracies may be accepted, however,

since very small wave numbers are important only for very distant

vortices. For far vortices, the magnitude of the downwash w_ is

decreasing like (h) -1, so for very distant vortices the angle of
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attack will be small and the loads negligible.

The behavior of the influence functions for small wave

number may be obtained by expanding the kernels KA (or K) about

@J_ -- 0 and solving the integral equation successively for higher

order terms in _A (or G). While this procedure may not practically

be carried out, it does show that the solution must be of the form

-- -- o,, o CS_') _ c_ ._,( __ ) _/._,.,C,_

the term _;,_, _ )_)l_-C.._ means first that the influence functions

will have an infinite derivative at _/_ = 0, making an accurate

approximation for very small _J_ difficult to obtain. It also

means that _A (or G) does not have a Taylor's series expansion in

terms of the derivatives of the Fourier transform of the result

for the limit _l_ = 0. Recalling that this limit is the lifting

line limit, this means the solution does not have an expansion

about the lifting line limit. That is, the lifting surface influ-

ence is of a fundamentally different nature than the lifting line

limit.

The behavior of the solutions for the influence functions

may be shown by an examination of the two-dimensional incompressible

result (/__ _O_ c_+_J_ _ 180 °) which is available in closed

form. While the result that all the terms in the Glauert series

except the first are identically zero,

is exceptional for this case, the results for the lift and circu-

lation are found to be typical of the solutions for the entire

ranges of /_A_$.A_ and @_ +_A._ . The magnitude and phase of

gL (_/_) are shown in Figure 2.9, and the real and imaginary
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of _C(_/_ )e in Figure 2.10. The asymptoticparts

behavior of the l_ft is shown to be

0

While on inspection of Figures 2.9 and 2.10 the magnitudes appear

to have exponential behavior_the decay is actually like (_/_)-1/2

Such behavior is not convenient in a Fourier transform however.

It is found that the decay may be approximated out to sufficient

wave number by a sum of exponential terms. While for large enough

wave number any such approximation must underestimate the influ-

ence function, the behavior at very large wave number is unimportant

because of the properties of _r_J._ as above, and further-

more exponential terms are very convenient to work with as Fourier

trans forms.

The phase of gL is seen to be asymptotically linear in _j_.

This is characteristic of all the influence functions, as would be

expected since the kernels also have this property. Typically,

the asymptote is reached by _J_ 2.0. The phase may be gen-

erally written

where b I -- b 2 -- 0 for (_-A,_ _---_T (the vortex and blade perpen-

dicular). It is found that b 2 is typically linear in (_ and

b I goes like _.o_(_ +4_3.

The behavior of the lift for small _/_ is

Again the _l_ _i_ term results in an infinite derivative

at U)_ = 0. The effect on the phase of gL(Ql_P_) may be seen

in Figure 2.9.

The solution for the influence functions for all /_dc.o$_ and

_--_is known exactly for one wave number, _j_ = 0.
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At _]_ = 0 (the lifting line or steady-state solution), the

solution is known to be

and

These values will be matched exactly by the approximate expressions.

With the above background on the nature of the numerical so-

lutions, the following expressions were adopted for the approxima-

tions to the influence functions:
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The coefficients in the Glauert series for n _ 4 were considered

negligible; typically, the values obtained for these coefficients

were of the order of the error expected in the numerical calcula-

tions.

The constants that appear in these expressions must be de-

termined from the numerical calculations. They depend on the

parameters /_o_-_. and (___ and are of course differe'nt for

eacn of the influence functions , ' _4' and , n=0,i,2,3.

The exponential terms of these expressions are similar to

the form of the Fourier transform of the downwash due to a free

vortex, _,(_/_,_ This may be interpreted as indicative of the

vortex nature of the induced trailed wake, which is an essential

feature of the lifting surface formulation. Such an interpreta-

tion should not be carried too far however, since as shown above

the exponential form of the influence functions is only approximate,

the true bei_avior being like (_I_)-1/2 for large _/_. The in-

fluence functions could be approximated to any given accuracy by

an infinite sum of exponential terms; but that simply implies the

not very surprising result that the lifting surface solution can

be formulated as an infinite sum of terms, each of a vortex nature.

The constants in the expressions for the approximate influ-

ence functions were determined from the numerical solutions for

each of the cases shown in Figure 2.8. Then approximations for

the behavior of the constants over the ranges of A g_s-_ and (_@_A_

were obtained. The procedure was as follows. First, the ex-

pressions for the phase constants (b) in terms of /_4_&./_ and

_÷_A_ were obtained. Then using these expressions for the phase

constants, the remaining constants (a and c) were obtained for the

individual cases by matching the magnitudes of the numerical and

approximate solutions at _elected points. From the values for

these constants, expressions for the constants (a and c) for arbi-

trary _v_sJ_ and _-K-] were constructed. The lift,
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the circulation, and the zeroth Glauert coefficient were matched
at

_/_ = 0.0, 0.4, 1.6, 2.6, 4.0, 5.0

All the functions have the correct value at _f_ = 0. The llft,

the circulation, and the zeroth Glauert coefficient were matched
out to _J_C_ 6.0; the momentand higher Glauert coefficients
were matched out to _}_ _ 4.0.

Generally, the magnitude of the approximations was matched
to better accuracy than the phase. Since the phase in a Fourier
transform corresponds to a linear shift in the argument (spanwise
variable), the accuracy obtained was considered acceptable. Also,
the asymptotic values of the phase were matched very accurately.
The approximations for the lift, the circulation, and the zeroth
Glauert coefficient were more accurate than those for the moment
and higher Glauert series. This was acceptable since the former
have a finite value, but the latter are identically zero at
_/_ = 0. Thus the latter are usually smaller in the important
range _ l, and correspondingly the actual momentand higher
pressure coefficients _Jill be small. The approximate expressions
for the constants in the influence functions matched the behavior
with _-_-A._ better than that with _Ac-o_Jt ; this was consistent
with the kernels for which the behavior with c__A_ was more sig-
nificant than that with C_+-A_ (in a given domain). The approxi-
mations were considered sufficiently accurate out to _4___ : 0.9.
The approximate expressions for the constants were more accurate
for the elliptic domain than for the hyperbolic or transitional
domains; this was consistent witll the accuracy of the numerical
solutions.

An example of the accuracy of the approximate expressions
for the influence functions, using the approximate expressions for
the constants, is shown in Figures 2.11, 2.12, and 2.13. These
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show the circulation, lift, and moment, respectively, for the case
_&_A.. = 0.0 and (_+.X_ = 135 ° . The approximate results

are compared with the numerical calculations. The accuracy shown

is typical of most of the range of A_-A_ and _@__.'3 The

scale of the magnitude of the moment should be noted.

Below are given the analytic expressions obtained for the

constants appearing in the approximate influence functions. The

following notation is used for the elliptic, transitional, and

hyperbolic domains:

<

TRN

HYP

c,b

The behavior of the kernels, and consequently the influence func-

tions and the constants, are significantly different in the three

regions. The transitional domain (the actual nonlinear region,

rather than the region where the linear kernel is valid) is not

actually the llne A4_.4. --_,A_t_÷.A.') but rather a strip of width

proportional to AA_s_A_ , as indicated in Section 2.3.6. Thus

the behavior of the constants in the transitional domain may be

taken as

where f is any of the constants (a,b,c) and fTRN is based on the

same /%4_&_A_ as fHYP or fELP" With

/_,s-..4- - _ c@+.-s,.-b
c@,+ ..,_'_

the transition region indeed has a width proportional to _A_-4_

It is also required then that fHYP' fTRN' and fELP be equal at
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the

which

ory.

to be

case A/%_-_s-A_ : 0.0 and _+_X__

is a width consistent witll the estimates

In what follows it should be noted that

consistent with the range of 6_ +_A_ .

-- 180 ° . Furthermore,

from nonlinear the-

Circulation:

 -926

.= _.-t_,o
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-,--'p_,,o

or

Te-_
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Lift:

Z.

5-;Z-

6- 17. -- 4, J7.. ( ,_-°3J'_ _

Ec/_

"4,rP._
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Moment:

_ (_I_ _
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Zeroth Glauert coefficient:
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Second Glauert coefficient:
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Third Glauert coefficient:
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2.4.3 Approximate Solutions for the Loading

The Fourier transforms of the loads, and from these by a

Fourier integral the actual loads, may now be obtained from the

downwash distribution and the approximate expressions for the uni-

versal loading influence functions. Thus one may write:

_
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where

The loads due to an arbitrary distribution of downwashalong
the span of the blade may be calculated by recognizing that the
Fourier transforms of the loads appear as products of the downwash
and influence function transforms. Then from the duality of pro-
duct and convolution

A
and everything is a F.T. wrt r , obtain
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The approximate expressions for the influence functions are then:

_ _O

[_- c_o
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With these loads known, the pressure is then given by

where

(

A
The nose-up moment about an axis at s -- a is

The center of pressure (referenced to the chord, with the origin

at the leading edge) is located at

The convolution form of the general solution is still not

a form that may be conveniently used in a rotary wing airloads

calculation. It is therefore necessary to consider now specific

downwash distributions. The distribution that arises in the rotary

wing airloads calculation is

(_A_ 3 = r./v_ --cc_,_']___ ÷_ _

This arises as the downwash due to a straight, infinite vortex of

strength _ , at a minimum distance h from the blade centerline,
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but not necessarily in a (s',r') plane. Such a vortex could be
used to approximate the interaction of the blade with a tip vortex.

The Fourier transform wrt r A of this distribution is then

_ c_j_ - ___ ._ _ _ _._(Ol._ ,+
Now the Fourier transforms of the loads may be inverted directly

to give the loads:

j=-

I_0

,=,-=-
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To examine the nature of the lifting surface solution using
the approximate expressions for the universal influence functions_
return now to the original formulation of the problem -- the vortex
induced airloads model -- as shown in Figure 2.1. The downwashis
induced by a straight, infinite vortex of strength _ , in an
(s',r') plane at a distance z = h below the blade. The vortex pro-

jection on the blade plane (z=0) makes an angle _-_-A-_ with

the infinite aspect ratio wing. The free stream Mach number normal

to the blade is /%4_.os__- ; the sweep angle-_ will be taken as zero

since it is only a relative parameter for an infinite aspect ratio

w ing.

The downwash induced by such a vortex at the blade centerline

(rA axis) is given by:

-crumb
co crumb -

(This is a special case of the vortex with more general geometry

discussed above; the vortex in a (s',r') plane gives d I = l,

d 2 = 0.)

The F.T. wrt rA is then:

The Fourier integral is then obtained to give the loads:
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Again the vortex nature of the approximations for the in-

fluence functions is apparent in these loads induced by a free

vortex. The functional form of the downwash is preserved in the

loading with what may be called an effective strength, an effective

height, and some phase shift for each term. However, as before

this interpretation should not be carried too far as the forms for

the influence functions are only approximate and do not correctly

represent the high wave number behavior. That the lifting surface

solution has a vortex nature should not be unexpected.

The lift, moment, and circulation induced by a free vortex

were calculated using these formulas. With the addition of the

free vortex height, the loading depends now on three parameters:

The height parameter is written in dimensional form to point out

that it is measured in terms of the semichord b, as is also of

course the spanwise coordinate rA. The vortex strength _

occurs only as a multiplicative factor, not as a parameter, as it

should for a linear solution.

The values of the parameters for which the loads were cal-

culated are given below, with the numbers of the figures which

show the results.

0.0

0.0

0.0

variable

variable

0.7

(¢+x)

90°

180 °

variable

90 °

180 °

vari able

h/b

variab le

varl ab le

1.0

1.0

1.0

1.0

Figures

2.14-17

2.18-21

2.22-25

2.26-28

2.29-32

2.33-35

The quantities of interest are: the peak values of the lift and

circulation; the spanwise location of the lift and circulation

108



peaks; the lift and circulation as a function of r A sin; and the
location of the center of pressure as a function of r A sin.

A
The spanwise coordinate used here is the variable r sin,

A Awhich has the limits r sin = r for the vortex and blade perpen-
A

dicular, and r sin = t for the vortex and blade parallel. Thus
this is the proper coordinate; however, for comparing results with

varying (__A._ , it should be remembered that the spanwise dis-

tance is being compressed by the use of this variable.

When the induced lift and circulation are unsymmetrical in
A

r sin (that is when _+_A._= "r_ ) there will be both posi-

tive and negative peak values, occurring at positive and negative
A

r sin locations, respectively. The results for these will be

indicated by the notation POS and NEG respectively.

Figures 2.14 through 2.17 are for the case AA_3_ = 0.0,

(_+-A,_ = 90°; that is, the blade and vortex are perpendicular.

The results are shown for h/b in the range 0.0 to 6.0. Figure 2.14

shows the variation of the peak value of the lift with h/b. For

(_+-A,_ = 90 ° , the lift and circulation (nondimensionalized) are

equal, and the geometry is symmetric in r A sin. Figure 2.14 also

shows the results of other methods for calculating the vortex in-

induced loading. Simons (Ref. 21) used a lifting line calculation

for a wing of aspect ratio 20. Kfoury (Ref. II) used a vortex

lattice lifting surface calculation for a wing of aspect ratio 20.

Silver (Ref. 12) used an assumed mode lifting surface calculation

for a wing of aspect ratio 6. Silver's method is considered the

most accurate, and for small vortex height (h/b = 0.5) where the

effects of the small aspect ratio may be expected to be small,

the agreement with the present calculation method is quite good.

Kfoury's results also agree well with the present method, showing

that he set up the vortex lattice correctly. As would be expected,

the lifting line results (Simons) are accurate only for large h/b.

A comparison of the approximate and numerical solutions for the
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influence function indicates that the use of the approximate ex-
pression introduces very little error into the calculation of the
loading (for this case). The only limitation on the accuracy of
the results shown for the present calculation is for very small

h/b; the effect of the last term in the approximate influence func-

tion indicates that the present calculation is accurate down to

h/b = 0.I, which is quite sufficient. Figure 2.15 shows the vari-

ation of the location of the peak with h/b. Again, the lifting

surface results show good agreement; for large h/b the lift

curves become rather flat, so the comparison here is not as important

as for the peak magnitudes. Figure 2.16 shows the lift as a function

of rA sin -- rA Figure 2.17 shows the center of pressure location as

a function of rA sin = rA; the variation from dqe quarter chord value

is small.

Figures 2.18 through 2.21 are for the case /_4_.G$-A- = 0.0,

<_+-_) -- 180°; that is the vortex and blade are parallel. The

range of h/b is from 0.0 to 6.0. Figure 2.18 shows the variation

of the peak lift and circulation with h/b; for _-_-A-3 _ 90 °

there are unequal negative and positive peaks. Also shown are the

results of a calculation by Inversin (Eel. 22). He used a rational

approximation for Kussner's function to obtain the lift induced by

a vortex starting eight chords upstream. Figure 2.19 shows the

variation of the position of the peak with h/b. Figures 2.20 and

2.21 show the lift and circulation as a function of rA sin = t.

For this case_ /_4_.A_ = 0.0 and _-g-_ = 180 ° , the moment

(and all Glauert coefficients except the zeroth) is identically

zero; thus the center of pressure is at the quarter chord for all

h/b and r A sin = t.

Figures 2.22 through 2.25 are for _SJ_- -- 0.0, h/b = 1.0,

and C_-_-A-_ varied from 90 ° to 180 ° . Figure 2.22 shows the vari-

ation of the peak magnitudes of the llft and of circulation with

<_ +-A__ . The effect of changing _'_+,21._ from the perpendicular

case _+_A.') = 90 ° is to slightly decrease the positive peak, and
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to greatly increase the negative peak magnitude. Figures 2.23 and
2.24 show the llft and circulation as a function of r A sin. The

delay in the circulation as _-____ increases from 90° to 180 °

in Figure 2.24 is a reflection of the fact that the circulation is

/k_ ) measured at the trailing edge, not at the bladea quantity (

centerline. Figure 2.25 shows the center of pressure location.

Again, the shift from the quarter chord is small; the center of

pressure moving off the blade reflects not a large moment, but

rather the llft going to zero with a finite moment.

Figures 2.26 through 2.28 are for C_+-&-_ = 90 ° , h/b = 1.0,

and _s-__ varied from 0.0 to 0.9. To examine the properties of

the solution for varying /__A_ , the effect of the Prandtl-

Glauert correction factor 1/_ must be separated from other com-

pressibility effects; the figures show the loads with and without

the 1/_ factor. Figure 2.26 shows the variation of the peak lift

with tv____/L_ . It is seen that the compressibility effects in

the influence functions are in the opposite direction from the

Prandtl-Glauert factor; that is, they decrease the magnitude of the

loads. Figure 2.27 shows the llft as a function of rA sin = t.

Figure 2.28 shows the center of pressure location; the effect of

_sJ_. is small, and is greatest at the higher Mach numbers.

Figures 2.29 through 2.32 are for (_+-_ = 180 °, h/b=l.0,

and _s-A-_ varied from 0.0 to 0.9. Figure 2.29 shows the vari-

ation of the peak magnitudes of the lift and circulation with

M_-_- Again the effect of compressibility on the influence

functions produces a decrease in the load magnitude with increas-

ing tV_s_- (except for the circulation at high Mach number).

Here as for C_-_ = 90 ° (Figure 2.26), the compressibility

effects combine to make the peak magnitudes of the actual lift and

moment rather insensitive to /_-oS-__ ; for high enough Mach

number, the Prandtl-Glauert factor becomes dominant however, and

increases the load peaks. Figures 2.30 and 2.31 show the lift and

circulation as a function of rA sin = t. It is seen that while the
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peak magnitudes are not too sensitive to Mach number, the func-
tional forms are quite dependent on M_-A- . Compressibility
effects produce a significant flattening of the positive peak
(after the vortex has passed). This effect was not seen for
K_+_A._ = 90° (Figure 2.27). This difference is due to the fact

A
that for _ @,A._ = 180° the coordinate r sin = t is in the
free stream direction,for which compressibility (signal propaga-
tion) effects will be greatest; for (_+_A-_ = 90°, the coordinate
A Ar sin = r is in the lateral direction, for which Machnumber ef-

fects will be minimized. Figure 2.32 shows the center of pressure
location. The deviations from the quarter chord are small still,
but are here in the opposite direction to that which has been
previously seen (Figures 2.17, 2.25, 2.28); this is a character-
istic difference between the elliptic and hyperbolic domains.

Figures 2.33 through 2.35 are for ]_d¢-_-/_- = 0.7, h/b =

1.0, and C_@-A-_ varied from 90 ° to 180 °. The boundary between

the elliptic and hyperbolic domains, _$-A__,(_+__ , is

crossed at C_+-A-_ _-_ 135.56 ° . Figure 2.33 shows the variation

of the lift and circulation peaks with _@_A-_ Most signifi-

cant is the increase in the peak lift near the transitional point.

Figures 2.34 and 2.35 show the variation of the llft and circula-

tion with rA sin° The phase shift in the circulation is again

seen as for _A_-A- = 0.0 (Figure 2.24). The change in form of

the llft and circulation as a function of rA sin between the

elliptic and hyperbolic domains is again seen (as for the compari-

son between Figure 2.27 and Figures 2.30 and 2.31).

Considering Figure 2.33 again, it is possible that the be-

havior near the transitional domain is in the approximate solution

but not actually in the true solution; that is, an error in the

approximation not evident in a rough comparison of the two solu-

tions (by which the approximate solution appears adequate).

Figure 2.36 shows the magnitude of the lift influence function,
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IgLl , for /V_______ = 0.7 and several C_,_A__ values; these

results are from the original numerical solution. The behavior

indicated in Figure 2.33 is indeed present here also. The

Fourier transform of the downwash for h/b = 1.0 is proporticnal

to _--_/_ , recalling that

The maximum values observed for the moment coefficient are

shown in Figures 2.37 and 2.38. Figure 2.37 is for h/b = 1.0,

C_+_A_ = 90 ° and 180 °, and /_a_s_/[__ varied from 0.0 to 0.9.

Figure 2.38 is for AA_os_/L_ = 0.0, C_+_A__ = 90 ° , and h/b varied.

The factor _/V_ is generally of the order 1.0. It is seen

that the peak moment coefficient is small even for high Mach number

and very small h/b. For most of the blade, the moment will be

very much smaller.

The results of the present calculation may be compared with

a strip theory application of the two-dimensional limiting case

(_+__)_ _r , /_q_A_ = 0.0), for which the exact solution may

be obtained by classical methods (as in Section 2.3.4). The two-

dimensional results may be used to obtain the loads for cases with

C_@-A-_ near _Z- by using an equivalent reduced frequency

in the two-dimensional influence function. Figure 2.39 shows a

comparison of the lift influence function (the lift due to a sinu-

soidal gust) calculated by such a strip theory, with the exact

results, for several values of reduced frequency. For small Q/_

and small _-A.3-_ strip theory is reasonably accurate, but this

is a result of neither the approximate nor the exact result chang-

ing much with C'__A__ at low reduced frequency.

ll3



SECTION3

APPLICATIONOF THELIFTING SURFACETHEORYSOLUTION
TO ROTARYWINGAERODYNAMICS

3.1 The Calculation of Rotary Wing Airloads

The calculation procedure used to determine the airloads

and blade motion of a helicopter rotor blade follows one blade,

which will be called the reference blade, around the azimuth. At

each azimuth station, the induced velocity due to the wake is cal-

culated at several downwash stations along the span of the refer-

ence blade. Then the airloads are calculated at several load sta-

tions along the span of the reference blade. Next, the blade

motion is calculated. Finally, the changes in the strength and

geometry of the wake during the motion of the reference blade to

the next azimuth station are calculated. These steps are shown

in Figure 3.1. The use of a variable inflow calculated from the

strength and geometry of a wake of trailed and shed vorticity pre-

cludes any closed form solution. The calculations are therefore

performed iteratively, following the reference blade around the

azimuth, until the results converge to the steady state solution.

Further description of the steps in the calculation procedure is

given below.

The development below will be presented in nondimensional

form. The appropriate reference quantities for rotary wing aero-

dynamics are the density, the rotor radius, and the rotor rota-

tional speed ( _ , R,_'_ ). This set of reference quantities will

be used throughout the remainder of this report.

The alrloading and blade motion are determined by the

physical properties of the blade (semichord to span ratio b, Lock

number L.N., and others) and by the collective pitch _o , the tip-

path plane inclination angle i (positive for rearward tilt of the

thrust vector), the advance ratio_ (rotor forward speed divided

by rotor rotational speed), and the advancing tip Mach number
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M1.0,90. The rotary wing configuration is shown in Figure 3.2
(only the reference blade is shown). The polar coordinates for
the rotor disk are r and _ , measured from the hub and from the
downstream blade position, respectively. The (i',J',k') system
is the tip-path plane coordinate system, with the origin at the

rotor hub. The free stream velocity __ is in the i'-k' plane and
the tip-path plane is parallel to the i'-J' plane.

3.1.i The Rotor Wake

Because of the interference of the rotor blade with its

own wake and the wake of other blades, the wake of a rotary wing

is considerably more important than that of a fixed wing. This

interference is manifested as a downwash at the blade, which must

be calculated in order to determine the loads on the blade and

its subsequent motion. This interference also effects the geometry

of the wake itself. The necessity for calculating the distorted

geometry depends on the flight conditions.

The wake of a helicopter rotor in forward flight consists

of shed and trailed vorticity in a distorted, skewed helix behind

each blade of the rotor. This vorticity is shed and trailed in

sheets. The edges of these sheets roll up to form tip vortices,

the vorticity becoming highly concentrated about a line trailed

from the tip of the blade. The bound circulation of a rotary wing

is highly concentrated at the tip, so the rolling up is accomplished

within a short distance from the tip and the tip vortex formed is

very strong. The bound circulation at the root of the blade goes

to zero rather smoothly so the root vortex will be weak and slowly

forming, and therefore the rolling up of the vorticity at the root

may be neglected. The strong tip vortices however are most im-

portant in determining both the blade loading and the wake geometry.

The very complex geometry of the wake prohibits an exact

calculation of the downwash due to the wake. Therefore an approxi-

mate representation of the wake is necessary. In order to calculate
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the downwashat the reference blade, the wake behind each blade
of the rotor is approximated by a net of finite strength, finite
length, straight line vortices (see Figure 3.3). The azimuthal
spacing in the vortex net is determined by the azimuth step in the
calculation procedure, and the spanwise spacing (number and posi-
tion of the wake trailers) may be arbitrarily predetermined.

The wake geometry is known at the beginning of the calcula-
tion procedure at an azimuth station. The geometry is given by
the positions of the node points of the tip and root trailed vor-
tices from each blade (see Figure 3.3). Linear interpolation be-
tween the positions of corresponding tip and root nodes gives
the geometry of the wake. Also known is the distribution over
the rotor di_k of the bound circulation of the reference blade
(as calculated in previous steps). The requirement of continuity
of vortex lines is sufficient to determine the strength of each
vortex line element from this distribution of bound vorticity.
From its position and strength, the velocity induced by each line
element may be calculated. Then the downwashat a station on the
reference blade is the sum of the contributions from each element
of the vortex net.

3.1.2 The Blade Airloading

The airloadlng on the reference blade is determined using

the calculated downwash and blade motion. It has been customary

in the calculation of rotary wing alrloads to use lifting line

theory. Thus it is assumed that the flow over the blade is

locally two-dimensional, and the loading is obtained from two-

dimensional unsteady airfoil theory (or experimental or empirical

section loads data). The effect of the rotor wake and the rest

of the blade are represented by the downwash at the blade section.

The two-dlmenslonal aerodynamic theory used is essentially

that of Theodorsen (as in Ref. 9), with the use of the lift de-

ficiency function replaced by an independent calculation of the
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downwashinduced by the wake. Compressibility effects are in-
cluded only through the use of the Prandtl-Glauert correction
factor based on the Mach number of the flow normal to the span
of the blade. Thus

whe re

compressible)load
J- /incompressible)

load

Mach number at the advancing

_)._¢_ _ tip (r = rT and _ = 90 °)

The basic assumptions of lifting line theory are linearity

and a high aspect ratio blade. The linear assumption is not a

restriction on the calculation of rotory wing airloads if an ap-

propriate stall model is used when the section angle of attack is

too large (Miller, Ref. 17). The assumption of high aspect ratio

is that

where b is the blade semichord to span ratio. Implicit in this

assumption is the requirement that the variation of the downwash

along the span of the blade be 0(i). For large variations of the

downwash in distances 0(b) lifting line theory is not valid. Such

a case frequently occurs in the calculation of rotary wing airloads,

when a tip vortex passes within several chord lengths of a blade.

For such configurations, the accurate determination of airloads re-

quires the use of lifting surface theory. The use of lifting sur-

face theory to calculate the vortex induced airloads on a rotary

wing is the subject of this report.

3.1.3 The Blade Motion

The aeroelastic equations of motion for a constant chord

(uniform spanwise structural properties), coincident elastic axis
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and inertial axis, articulated (no lag hinge, zero flapping hinge
offset) blade are

Sbr"

(Miller and Ellis, Ref. 23).

where

blade section moment of inertia

about the feathering axis

D o

e ° __

L -

nonrotating natural pitch frequency

collective pitch

section lift, with lift curve slope 2_

section nose-up moment

The equations of motion are solved for the blade motion by harmonic

analysis of the integrated loads.

3.1.4 The Wake GeometrF

The change in the geometry of the wake as the reference

blade moves to the next azimuth station is calculated on the basis

that a point in the wake moves with the velocity of the fluid at

that point, that velocity being composed of free stream and induced
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components. There are several schemes for calculating the wake

geometry, varying in the detail with which the induced velocity

at a wake element is determined.

a) Rigid Wake. For the purpose of computing wake geometry

only, the induced downwash is taken as a constant over

r and _ ; thus the wake is an undistorted, skewed helix.

b) Semirigid Wake. Each point of the wake (each node of the

vortex net) is assumed to travel downward always at a

velocity equal to the downwasn at the poin.t on the disk.

where it was trailed or shed. This involves only

slightly more complexity and calculation then the rigid

wake model.

c) Modified Semi-rigid Wake. A combination of the rigid

and semirigid methods, which should be more accurate,

is to use the semirigid geometry up to, and the rigid

geometry after, the passage of the following blade

over the vortex.

d) Nonrigid Wake. The actual downwash is calculated at

selected points of the wake -- at least for the points

on the tip trailed vortices -- and is used to determine

the change in the wake geometry during the azimuth in-

crement. This involves considerably more calculation

than the other methods.

Which geometry should be used depends primarily on how close the

wake comes to the rotor blades; the closer it gets the more accuracy

is required of the geometry in order to obtain accurate loads. The

nonrigid geometry calculation is quite complex, but this report is

concerned only with the aerodynamic theories and their application

to rotary wing aerodynamics. For further information on the wake

geometry problem, reference must be made to other work, for example

that of Scully (Ref. 3) or Landgrebe (Ref. 4).
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3.1.5 The Results

The calculation procedure is performed iteratively as the ref-

erence blade moves around the rotor disk, until a converged (steady

state) solution is obtained. The solution then gives: the section

lift and moment over the disk; the section angle of attack over the

disk; the state of flow (stalled or attached) over the disk; the

blade motion (flapping and pitching); and the rotor thrust, _T/_ .

3.2 A Straight Infinite Vortex

A straight, infinite vortex will be used to approximate the

effects of a tip vortex. Therefore it is necessary to develop

the velocity induced along a blade feathering axis by such a vortex.

3.2.1 Orthogonal Geometr_

Consider first the case with the vortex and blade perpendicular

to each other, the vortex at a distance h below the blade (see

Figure 3.4). The (x,y,z) system is orthogonal, with _ in the direc-

tion of the blade and ]_parallel to the vortex. The vortex has

strengthF" and a core radius r c. The induced velocity _ is re-

quired at a point P on the y axis (its x location is arbitrary be-

cause of the infinite extent of the vortex). The following ex-

pressions give the induced velocity increment due to a vortex

element ds :

where

r r- x
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For r _ r c this is the usual Biot-Savart law, and for r < r c it is
a generalization of the solid body rotation in the core of a two-
dimensional (point) vortex.

Integrating over the length of the vortex, obtain

V----

- _5

The downwashw is the k component of _. There is a peak in the
magnitude of w, which must occur either outside the core or at the
core boundary:

P

J

The form of w(y) changes little if the (x-y) plane does or does

not intersect the core(_h _ rc or _h _ rc). Thus it is rea-

sonable when it does intersect the core to replace the free vortex

by an equivalent vortex, of strength _eq and at a distance heq,

such that the simpler velocity form derived by Just using the
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Biot-Savart law will be uniformly valid. Requiring that the
positions and magnitudes of the downwashpeaks be the same, find

and

which are used if _h _ r c. It is seen that the minimum separation
of the blade and vortex that need be considered is the core radius:

(heq)m_n = r c.
3.2.2 General Geometry

Now consider the more general geometry, shown in Figure 3.5.

It is necessary to obtain the downwash along an arbitrary line

(the blade feathering axis) due to a straight infinite vortex of

arbitrary orientation. Following the above results, the vortex

core need not be considered in the derivation. The orientation

of the vortex is given by i*, and its location by _o" The position

of the point at which the induced velocity is required is given by

_-_ _ + --_

where i*, j*, k* are unit vectors, here not necessarily orthogonal;

h is a constant and y gives the position of the point along the llne

with orientation J*.

The Biot-Savart law gives the induced velocity

p -
V ---_
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or

whe re

It is convenient now to transform ghe geometry so the vector

h = h k* is the minimum distance between the vortex and the blade

line. It may be shown that the distance between the vortex and the

blade line

is a minimum at

and

__-- C_. _b _
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It is seen that the minimum distance occurs when the vector k* is

perpendicular to both i* and J*. The new (minimum distance) h

and k* are given in terms of the old geometry by

and the origins of y and x are shifted so

At this point, the vortex core correction may be applied.

If the point of minimum distance Ymin lies within a core radius rc

of the blade, that is if

then the minimum distance (new h) is used in the criterion for

using the equivalent vortex to account for vortex core effects.

As in the case with orthogonal geometry, the vortex core correc-

tion is then:
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If
i

Then use

With the new geometry (k* now perpendicular to i* and J*)

the result for the induced velocity simplifies to

F

__%
With the vector k

n

wash is then

normal to the blade surface, the induced down-

3.3 RotarF Win_ GeometrF for the Liftin_ Surface Solution

The lifting surface theory solution was developed for the

loads on an infinite aspect ratio wing in a convected downwash
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field. Procedures must be developed to apply the model problem for
vortex induced loads to rotary wing geometry. The restriction of
the lifting surface solution to convected downwashfields intro-
duces a limitation in the application of the theory; the model
problem is steady in a frame of reference traveling with the down-
wash field (that is, with the vortex), while there is no such frame
of reference for the rotary wing -- the downwashis only locally a
convected field. Moreover, the theory was developed for an airfoil
in a uniform free stream rather than for a rotary wing. These dif-
ferences between the model problem and the rotary wing configura-
tion place limitations on the application of the lifting surface
theory solution. Thus lifting surface theory should only be used
where necessary, for vortex induced loads for which lifting line
theory is no longer valid. Lifting line theory should still be
used to obtain the other loads.

The tip vortex near a rotor blade will be approximated by
a straight, infinite line vortex of appropriate strength, position,
and orientation. The induced velocity along the span of the blade
due to such a vortex is available in analytic form. In order to
apply the lifting surface solution, it is necessary to obtain the
parameters _$__ and C_+-_ which determine that solution.
For each blade section the geometry of the blade and vortex con-
figuration is locally like the model problem, and it is in a
local sense that the lifting surface theory parameters are de-
termined.

With a rotary wing, the relative velocity normal to the
blade varies along the span. The local value of _4_J__ will
be used at each span station; that is, AA_j__ is the Mach number
of the flow normal to the span:

The angle is determined from the orientation of
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the straight, infinite vortex relative to the blade. It is the
angle between the span direction, j*, and the direction of the
convected vortex, I* (see Figure 3.6). The orientation of the
vortex gives I*, and the blade direction is

where _ = rotor coning angle_and the only blade motion included
is the rigid flapping (i'-J' is the tlp-path plane). Then re-
calling that the lifting surface solution is set up for _(_+A_<_
(the remainder of the angle range is handled by symmetry), may
obtain

CIB+_,u')= - I
and

In the rotary wing configuration, the relative free stream

velocity seen by the blade varies both with r and _U There are

variations in both the geometry and the free stream ( C_+_A_ and

_JL_ ), and on a scale of the order of the rotor radius the

model problem is not applicable to the rotor geometry. However

the lifting surface theory solution was developed to handle vari-

ation of the downwash over distances of the order of b, and on

that scale the model problem will be a good representation for

vortex induced airloads. The lifting surface solution will give

accurate loading due to a nearby vortex, but lifting line theory

should still be used to obtain the remainder of the loads (due to
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blade motion and most of the vortex wake).

The application of the lifting surface theory further re-
A

quires the variable r . The direction of this coordinate depends
on the orientation of the vortex, and on whether the blade is in
the reverse flow region. Examination of the geometry (Figure 3.6)
gives (recalling r A is nondimensionallzed with b)

A, A

where x, r are the unlt vectors

.-_vA

and recall that y is the r coordinate with the origin at the mini-

mum distance to the vortex:

y = r - (r)minlmu m vortex distance

Now the induced downwash may be written in a convenient form.

The vector normal to the blade surface (considering only rigid

flapping again) is

Thus
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and since

the quantity (_._/S;_(_+.A.) is identically unity if I"_ lies in

the tlp-path plane, and is finite for all s',_f_+-A-_) . Also note

that the quantity _#X_)._ is identically zero for i* in the

tip-path plane.

Then the downwash may be written as

where

or as

A

_vb

where the sign of rA is determined as above. Here w and _ are

still based on/_. and R. This is the form of the downwash distri-

bution for which the lifting surface solution was obtained.

The lifting surface loads are nondimensionalized with b

and V; they must be converted to loads based on R and/), for use

in rotary wing aerodynamics. Considering also the sign conventions

for the loads, obtain:
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L __ I_,-I _- L v'6

_
4_ ,/___, z_ _----_

A--z_6 I i-'/v6 I

Z_-lu,-I

where

Here the lifting surface results are used with the downwash w

based on_'_R; that is, since w is the downwash due to a vortex,

the vortex strength _ is based on the velocity .f_R. A length

is also involved in the nondimensionalization of the vortex

strength, and of the distances that appear in the lifting surface

formulas; that length is the blade semichord b.
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_.4 The Application of the Lifting Surface Solution

The lifting surface solution has now been put into a form

suitable for rotary wing aerodynamics. In order to use the

lifting surface theory correctly, some care must be taken with the

division of the wake, downwash, and loads between it and lifting

line theory.

Lifting surface theory includes the vortex induced trailed

wake behind the reference blade. (It is only a trailed wake in

the steady coordinate system of the model problem; in the blade

coordinate system there will be shed vorticity as well.) This

trailed vorticity is assumed in the model problem to extend

straight back from the blade to infinity. Since it is included

in the lifting surface solution, this induced wake vorticity is

not used in calculating the downwash due to the nearby part of

the wake of the reference blade -- nearby meaning for_ of the

order of 60 to 90 degrees. Thus the bound circulation due to the

lifting surface theory is not used in the calculation of the

strength of the nearby part of the wake of the reference blade.

The wake is now divided into two parts: the tip vortices

from all of the blades; and the rest of the wake, except for the

lifting surface part of the nearby wake of the reference blade.

The downwash induced by the tip vortices will be handled

using lifting surface theory. At the downwash calculation sta-

tions of the reference blade, the downwash due to the tip vortices

is calculated as the sum of the induced velocities of all the

straight line segments that make up the tip vortices (the tip

vortices are the outer edge trailed segments of the vortex net).

Simultaneously the points of nearest approach of the tip vortices

to the reference blade are calculated. These points are a local

minimum in the distances from each short line segment to the blade.

Next, the tip vortex at each of these points of nearest approach

to the reference blade is approximated by a straight infinite
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vortex, with strength, position, and orientation the sameas the
tip vortex at the point of nearest approach. It is to this field
of straight infinite vortices, approximating the tip vortices of

the rotor, that the lifting surface theory solution may be applied.

The downwash due to this field of straight infinite vortices

is calculated at the downwash stations of the reference blade, and

the difference is obtained between this calculation and the earlier

calculation of the actual downwash due to the tip vortices. This

difference is added to the downwash of the rest of the wake (see

below) so that the combination of lifting surface and lifting

line theories models the correct angle of attack of the blade

section.

The downwash induced by the rest of the wake (as defined

above) will be handled using lifting line theory. At the downwash

calculation stations of the reference blade, the downwash due to

the rest of the wake is calculated as the sum of the induced ve-

locities of all the elements of the vortex net (except the outer

trailed segments, and the lifting surface nearby wake). To this

calculated downwash is added: first, the difference between the

actual and approximate downwash induced by the tip vortices (as

above); second, the inflow due to the tip-path plane inclination

(_T_,_L ); and third, the inflow due to the no-feathering

plane inclination (--/_,_). The result is the total downwash

(except for the induced velocity of the field of straight in-

finite vortices representing the tip vortices) at the downwash

calculation station.

The downwash is obtained at the loading calculation stations,

which will in general not be the same as the downwash calculation

stations, by Lagrange (polynomial) interpolation between the down-

wash stations.

The angle of attack is calculated at each loading station

of the reference blade, using as the downwash the sum of the
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induced velocity of the field of straight infinite vortices, the
interpolated downwashof the rest of the wake, and the downwash
due to the nearby part of the lifting surface wake (which is not
used in the loading calculation since it is already included in
the lifting surface theory solution). If the angle of attack is
too large, an appropriate stall model is used to obtain the loads
(see Johnson, Ref. 24).

If the blade section is not stalled, the aerodynamic loads
are calculated at the loading calculation station using the combi-
nation of lifting surface and lifting line theories. The lifting
surface theory solution is used to obtain the vortex induced loads
of nearby tip vortices; that is, it is used with any vortices in
the field of straight infinite vortices, which comecloser to the
reference blade than a distance of the order of five chord lengths
or so. Lifting line theory is then used to obtain the remaining
loads: the loads due to the blade motion, the rest of the wake,
and the far vortices in the field of straight infinite vortices.

The procedure developed here to calculate rotary wing air-
loads emphasizes the importance of careful handling of the wake
and downwash_whichhave always been the outstanding features of
rotary wing aerodynamics. In order to obtain accurate airloads
two features of the calculation procedure have been stressed:
first, it is necessary to obtain as accurate information as prac-
tical about the downwashdistribution; second, accurate loads
calculations require the use of lifting surface theory to obtain
vortex induced loading.
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SECTION4

EVALUATIONOF THEUSEOFTIIE LIFTING SURFACE
SOLUTIONIN THE CALCULATIONOFROTARYWINGAIRLOADS

4.1 The Rotor Confisuration

In order to evaluate the use of the lifting surface theory

solution to replace lifting llne theory in the calculation of vor-

tex induced airloads on a rotary wing, the rotor geometry was

simplified to a single-bladed rotor at high advance ratio encounter-

ing a free vortex from a fixed upstream airfoil (see Figure 4.1).

The rotor is at zero tip-path plane incidence, so the free vortex

lies in a plane parallel to the tip-path plane; it lies in the

free stream direction, at a lateral distance YG from the rotor

hub, and at a distance h below the tip-path plane; that is, the

tip of the vortex generator in the tlp-path plane reference system

is located at

(Figure 4.1).

The parameters describing the blade, the vortex, and the

calculation procedure are as follows (recall that all lengths are

nondimensionalized using R, the rotor radius).

a) Blade semichord: b = 0.025

The blade aspect ratio was large, so lifting line theory

was valid for loads due to blade motion, and the effect

of the tip on the loading was minimized.

b) Blade Lock number: L.N. = 0.0

Then the only blade motion was first harmonic rigid

flapping (no elastic flapping, rigid or elastic

twisting, or other harmonics of rigid flapping)

and the tip-path plane remained undistorted (also

the coning angle was then zero).
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c) Advance ratio: /_ = 0.5

The advance ratio was high so that the loading induced

by the blade's own tip vortex was minimized.

d) Tip-path plane inclination angle: _ = 0

Collective pitch: _o= 0

Built-in twist: _& = 0

Thus the only airloading was that induced by the

free vortex.

e) Tip Mach number (at _ = 90°):

M1.0,90 = 0.0 or 0.5 or 0.9

f) Vortex generator location:

rG = - 4.0 i' + yGj' + h k'

YG = - 0.5 or 0.0

h = (h/b) b

g) Free vortex core radius: r = 0.001
C

This was smaller than the minimum h used, so the

core size did not enter the lifting surface theory

evaluation (recall that for usual applications,

the minimum effective h that will be encountered

is the vortex core radius).

h) Free vortex strength: _ = 0.011

This corresponds to a generator angle of attack

_ = 8 degrees, or a tip vortex of a rotor

with CT/r_0.05.

i) Azimuth increment in the calculation procedure:

_= i0 degrees
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J) Numberof trailers in vortex net = 4
Number of downwashcalculation points = 3

Extent of blade wake: 2,_ = 220 degrees

Extent of nearby portion of lifting surface wake = 90 degrees

(The nearby wake is that part which is considered

as handled by lifting surface theory; it was varied

from 60 to 180 degrees with negligible effect for

this single-bladed rotor at high advance ratio.)

Because of the high advance ratio and the zero collective

pitch, the loading induced by the blade's own tip vortex was

negligible and occurred only in the fourth quadrant of the disk.

Thus it was sufficiently accurate to use semirigid geometry for

the rotor wake. (In semirigid geometry, each element of the

wake is assumed to move downward at a speed equal to the down-

wash at the point on the rotor disk from which it was trailed.)

Moreover, the blade tip vortex could be treated with the rest of

the wake, using lifting line theory, and only the free vortex was

treated using lifting surface theory.

Rigid geometry was used for the free vortex; that is, it

was a straight line in the free stream direction parallel to the

tip-path plane. Since with zero Lock number the blade tip-path

plane was not distorted by rigid or elastic blade motion, the

position of the blade relative to the free vortex was simply and

exactly determined. Thus in these theoretical calculations the

back influence of the blade loading on the geometry of the vortex

was not included.

4.2 Comparison of Liftin 5 Line and Liftin 5 Surface Loadin 5

Calculations

The blade loading on the rotor described above was calcu-

lated using both lifting line theory and the lifting surface

theory solution. A comparison of the two predictions of the air-

loading allows an evaluation of the application of the lifting

surface solution to the rotary wing airloads calculation.
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The loading was calculated for several values of the vortex

height, h/b, and of the advancing tip Mach number, M1.0,90, with
the vortex lateral position

y& = - O.5

(the vortex on the advancing side of the disk). Figures 4.2, 4.3,
and 4.4 show the lift variation with azimuth at a blade radial
station r = 0.6, for h/b = 2.0, 1.0, and 0.5 respectively, and

Ml.o,90 = 0.0. The scale changes of the ordinate shouldbe noted.
The difference between the lifting line and lifting surface loads
is significant. Figure 4.2 also shows the llft calculated using
lifting line theory with a wake net of ten trailers and with nine
downwashcalculation points. Little improvement is gained over
the 3 x 4 lifting line calculation.

Figure 4.5 shows the ratio of peak-to-peak lifting surface
lift to peak-to-peak lifting line llft for h/b from 0.2 to 10.0.
Figure 4.3 shows what is meant by peak-to-peak llft. The data in
Figure 4.5 is for r = 0.6 and includes results at an advancing

tip Mach number of Ml.0,90 = 0.0, 0.5, and 0.9. The Mach number
had little effect on the peak-to-peak ratios (unless the peak Just
happens to occur when the blade section is in the transition
region of the lifting surface theory, the Mach number effects are
small except for the Prandtl-Glauert factor, which is the same
for both lifting line and lifting surface theories). It can be seen
in Figure 4.5 that as h/b decreases from about I0.0 the
lifting line results becomeincreasingly inaccurate as compared
with the lifting surface results.

The loading was calculated for several values of the vortex

height, h/b, and of the advancing tip Machnumber, MI.0,90, with
the vortex lateral position

YG=0.0

(the vortex below the centerline of the disk). Figure 4.6 shows
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the lift variation with azimuth at r = 0.75 and with h/b = 1.O

and MI.0,90 = 0.0. This case is typical of the results for all
values of h/b (0.2 to 10.0) and M1.0,90 (0.0 to 0.9) considered.
Figure 4.7 shows the ratio of peak-to-peak lifts for h/b from
0.2 to 10.0. Typically in the lifting line results the peaks
are 5 to 15 percent low and the entire lift distribution delayed
by_ = 3 to 5 degrees as compared with the lifting surface re-
sults. However, from the downwashdistribution it is known that
the peaks must occur at a distance of about 2(h/b)b apart, while
the azimuth increment of _ = I0 degrees corresponds at r = 0.75
to a distance of about 5b. Thus it is probable that the peak
values have not actually been defined by a calculation of the load-
ing only at stations every ten degrees around the azimuth. Such a
problem may be expected whenever a configuration is encountered
with the vortex and the rotor blade nearly parallel, as may occur
with tandem rotors. Generally, difficulties defining the peak
loads may be expected whenever the component normal to the vortex
direction of the distance between calculation points on the rotor
disk (for a given blade section as _ is incremented, or for a
given azimuth as r is incremented) is less than the vortex-blade
separation or so. Little would be added to the comparison of
lifting surface and lifting line theories by the use of a smaller
azimuth step, and the size necessary to define the peaks ade-
quately (_< 2 degrees) would not be at all typical of rotary
wing airloads calculations. The proper handling of vortices
nearly parallel to the blade is one of manyprocedural problems
that remain to be solved in rotary wing aerodynamics.

4.3 Evaluation of the Use of the Liftin G Surface

Theory Solution

The above results show that there is a significant differ-

ence between the loadings calculated using the lifting llne and

the lifting surface theories. Simply on the basis that lifting
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line theory is an approximation to lifting surface theory, re-
sulting from the assumption of large (effective) aspect ratio,
the lifting surface results must be accepted as more accurate
(within the limitations of both theories). Therefore the lifting
surface solution should replace lifting line theory in the calcu-
lation of vortex induced airloads. The above results also suggest
the criterion that lifting surface theory be used for any vortex
at a distance from the blade less than 10b or so.

The lifting surface solution was developed to be as direct
to apply as the lifting line theory, and it is that. The amount
of calculation involved in a rotary wing airloads calculation is
increased by the use of lifting surface theory rather than lifting
line theory, but still the airloads calculation remains small com-
pared with the downwashcalculation.

What is involved in the use of lifting surface theory rather
than lifting line theory may be mademore explicit. An exact, al-
though discrete element, representation of the vortex wake with the
accuracy of the airloads limited by the rate of variation of the
downwashalong the span (that is, a vortex net wake plus lifting
line theory airloads) is being traded for a distributed sheet,
although only locally valid, representation of the wake with the

accuracy of the loads limited by the accuracy of the approximation

to the numerical solution of the model problem (that is, lifting

surface theory airloads, including a trailed vortex wake).

The limitation on the lifting surface theory arises from

the application of the model problem to rotary wing geometry. The

model problem involves fixed geometry, with a constant free stream.

The solution for this model is applied to a rotary wing, where there

are variations of the free stream velocity with both _ and r, and

also changing relative geometry (between the blade and a vortex),

by using local (in _ and r) values of the parameters M_-_-_

and C_+-A._ (the velocity and geometry). However, these changes
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in the velocity and geometry occur over distances of 0(R) while
the vortex induced airloads vary over distances of 0(b). The
lifting surface solution can handle variations in the downwash
over distances of 0(b) (while lifting llne theory cannot) and on
this scale the local geometry is well approximated by the model
problem. The application of the lifting surface theory solution
developed here requires that the geometry of the blade, vortex,
and wake be locally llke the model problem; and the use of lifting
surface theory is necessary only for very close vortices. These
two conditions are entirely consistent if the semlchord to span
ratio b is small. This is, in fact, the same assumption as in
lifting line theory, arising here because of the geometry of the
wake rather than the aerodynamics of the blade.

Thus with the application of the lifting surface solution
to the rotary wing, the assumption about the rate of variation of
the relative free stream velocity and of the geometry of the wake
relative to the blade remains,but the restriction on the variation
of the downwashalong the span of the blade has been removed. The
lifting surface theory solution of this particular model problem
should not be used for the airloads due to the blade motion or the
far wake, but should be used for the vortex induced alrloads.
Lifting llne theory and the lifting surface solution respectively
are appropriate for these two classes of alrloads.
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SECTION5

CONCLUSIONSANDRECOMMENDATIONS

The following has been accomplished in this report:

a) A lifting surface theory solution and a useable approxi-
mation to it have been obtained for a model problem ap-
propriate for the calculation of vortex induced airloads.

b) Procedures have been developed for the application of this
solution of the model problem to the calculation of ro-
tary wing airloads.

c) The application of the lifting surface solution has
been evaluated using a simplified rotary wing configu-
ration.

The comparison between the use of lifting line theory and the use
of the lifting surface solution in the calculation of vortex in-
duced airloads on a rotary wing showed a significant difference
between the results of the two methods. Thus it is recommended
that the lifting surface solution developed here be applied to
the calculation of airloads for the actual helicopter rotor;
furthermore, this application should itself be subjected to exten-
sive correlation with the results of experiments and other theo-
ries, in order to further the understanding of the rotary wing
airloads problem and the application of the present method to that
problem.

From the necessity of the use of lifting surface theory to
obtain accurate vortex induced airloads, it follows that accurate
wake geometry information is also required. Therefore, it is
recommendedthat the present lifting surface solution be used with
a nonrigid wake geometry calculation. Moreover, small scale vortex
geometry distortions induced by the blade loading, which is itself
due partly to the vortex, are possibly important in the airloads
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calculations. If this proves to be so, procedures should be de-

veloped to handle such distortions.

Even with the completion of the application of llfting sur-

face theory and nonrigid wake geometry to the calculation of rotary

wing airloads (the development of these applications is currently

in progress), what will undoubtedly be found is that entirely satis-

factory alrloads prediction is still not possible. There remain

yet several important features of the problem that have not been

correctly handled. The following appear most important at present:

a) the viscous aspects of the mutual influence of the

vortex and the rotor blade (the theory presented here

involves only a potential flow solution);

b) tl]e general problem of vortex roll-up and formation s

of vortex core development and size; specifically,

information is needed about the growth and struc-

ture of the tip vortex of a rotary wing; also in-

cluded in the problem is secondary vortex inter-

action (that is, the combination of a vortex

with the trailed wake vortlclty it induces on a

blade and the influence of the combination on

a following blade);

c) and the loading at the blade tip, including the

effects of an arbitrary sweep angle and angle

of attack; this problem involves both vortex

formation and induced airloads, and it is probable

the even planar lifting surface theory will not be

sufficient to obtain accurate loading.

These and other features will have to be handled before

confident predictions of airloads can be made. The rotary wing

airloads problem will only be solved by a continued effort to

isolate, model, and resolve all of the aerodynamic, dynamic, and

geometric factors that form the problem.
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